cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187056 G.f.: A(x,y,z) = Sum_{n>=0} ((2n)!/n!^2)*[Sum_{k=0..2n} T(n,k)*z^k]*x^(2n)*y^n/(1-x-xy)^(4n+1) where A(x,y,x+xy) = Sum_{n>=0, k=0..n} C(n,k)^4*x^n*y^k at z = x+xy; this is the triangle of coefficients T(n,k), read by rows.

Original entry on oeis.org

1, 7, 4, 1, 131, 176, 96, 16, 1, 3067, 6588, 5895, 2416, 477, 36, 1, 79459, 235456, 298816, 197824, 73120, 14656, 1504, 64, 1, 2181257, 8252300, 13668975, 12563200, 6966400, 2373504, 490700, 58400, 3675, 100, 1, 62165039, 286326288, 587324232, 692965040, 516541455, 252283968, 81432456, 17138304, 2276145, 179440, 7632, 144, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 02 2011

Keywords

Examples

			G.f.: A(x,y,z) = 1/(1-x-x*y)
+ 2*(7 + 4*z + z^2)*x^2*y/(1-x-x*y)^5
+ 6*(131 + 176*z + 96*z^2 + 16*z^3 + z^4)*x^4*y^2/(1-x-x*y)^9
+ 20*(3067 + 6588*z + 5895*z^2 + 2416*z^3 + 477*z^4 + 36*z^5 + z^6)*x^6*y^3/(1-x-x*y)^13 +...
G.f. at z = x+xy yields: A(x,y,x+xy) = 1 + (1 + y)*x
+ (1 + 16*y + y^2)*x^2
+ (1 + 81*y + 81*y^2 + y^3)*x^3
+ (1 + 256*y + 1296*y^2 + 256*y^3 + y^4)*x^4
+ (1 + 625*y + 10000*y^2 + 10000*y^3 + 625*y^4 + y^5)*x^5 +...
which is a series involving binomial coefficients to the 4th power.
...
This triangle of coefficients T(n,k) of z^k, k=0..2n, begins:
[1];
[7, 4, 1];
[131, 176, 96, 16, 1];
[3067, 6588, 5895, 2416, 477, 36, 1];
[79459, 235456, 298816, 197824, 73120, 14656, 1504, 64, 1];
[2181257, 8252300, 13668975, 12563200, 6966400, 2373504, 490700, 58400, 3675, 100, 1];
[62165039, 286326288, 587324232, 692965040, 516541455, 252283968, 81432456, 17138304, 2276145, 179440, 7632, 144, 1];
[1818812387, 9876304172, 24205612067, 34939683632, 32837525567, 21029302364, 9356637759, 2899564224, 619135629, 88879924, 8237341, 461776, 14161, 196, 1];
[54257991011, 339398092544, 968547444480, 1655445817088, 1881608595776, 1496188189440, 853911382016, 353544477440, 106191762336, 22927328512, 3492995968, 364541184, 24932320, 1044736, 24192, 256, 1];
...
		

Crossrefs

Formula

Row sums equal A000897(n) = (4n)!/((2n)!*n!^2).
Column 0 equals A099601(n) = quotient of de Bruijn sums S(4,n)/S(2,n).