cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187068 Let i be in {1,2,3}, let r >= 0 be an integer and n=2*r+i-1. Then a(n)=a(2*r+i-1) gives the quantity of H_(7,1,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x=sqrt((2*cos(Pi/7))^2-1).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 2, 3, 5, 6, 11, 14, 25, 31, 56, 70, 126, 157, 283, 353, 636, 793, 1429, 1782, 3211, 4004, 7215, 8997, 16212, 20216, 36428, 45425, 81853, 102069, 183922, 229347, 413269, 515338, 928607, 1157954, 2086561, 2601899
Offset: 0

Views

Author

L. Edson Jeffery, Mar 06 2011

Keywords

Comments

(Start) See A187070 for supporting theory. Define the matrix
U_2=
(0 0 1)
(0 1 1)
(1 1 1).
Let r>=0, and let A_r be the r-th "block" defined by A_r={a(2*r),a(2*r+1),a(2*r+2)}. Note that A_r-2*A_(r-1)-A_(r-2)+A_(r-3)={0,0,0}. Let n=2*r+i-1 and M=(m_(i,j))=(U_2)^r. Then A_r corresponds component-wise to the first column of M, and a(n)=a(2*r+i-1)=m_(i,1) gives the quantity of H_(7,1,0) tiles that should appear in a subdivided H_(7,i,r) tile. (End)
Since a(2*r+2)=a(2*(r+1)) for all r, this sequence arises by concatenation of first-column entries m_(1,1) and m_(2,1) from successive matrices M=(U_2)^r.
This sequence is a nontrivial extension of both A038196 and A187070.

Examples

			(Start) Suppose r=3. Then
A_r = A_3 = {a(2*r),a(2*r+1),a(2*r+2)} = {a(6),a(7),a(8)} = {1,2,3},
corresponding to the entries in the first column of
M = m_(i,j) = (U_2)^3 =
(1 2 3)
(2 4 5)
(3 5 6).
Suppose i=2. Setting n=2*r+i-1, then a(n) = a(2*r+i-1) = a(6+2-1) = a(7) = m_(2,1) = 2. Hence a subdivided H_(7,2,3) tile should contain a(7) = m_(2,1) = 2 H_(7,1,0) tiles. (End)
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = a[2] = a[3] = 0; a[4] = a[5] = 1; a[?Negative] = 0; a[n] := a[n] = 2*a[n-2] + a[n-4] - a[n-6]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jan 02 2013 *)
    CoefficientList[Series[(1 - 2*x^2 + x^5)/(1 - 2*x^2 - x^4 + x^6), {x, 0, 50}], x] (* G. C. Greubel, Jul 06 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-2*x^2+x^5)/(1-2*x^2-x^4+x^6)) \\ G. C. Greubel, Jul 06 2017

Formula

{a(n+2)} = A187070.
a(n) = 2*a(n-2) + a(n-4) - a(n-6).
G.f.: (1-2*x^2+x^5)/(1-2*x^2-x^4+x^6).
Closed-form: a(n) = (1/14)*[[X_1+Y_1*(-1)^(n-1)]*[(w_2)^2-(w_3)^2]*(w_1)^(n-1)+[X_2+Y_2*(-1)^(n-1)]*[(w_3)^2-(w_1)^2]*(w_2)^(n-1)+[X_3+Y_3*(-1)^(n-1)]*[(w_1)^2-(w_2)^2]*(w_3)^(n-1)], where w_k = sqrt[(2cos(k*Pi/7))^2-1], X_k = (w_k)^5-2*(w_k)^3+1 and Y_k = -(w_k)^5+2*(w_k)^3+1, k=1,2,3.