A225114 Number of skew partitions of n whose diagrams have no empty rows and columns.
1, 1, 3, 9, 28, 87, 272, 850, 2659, 8318, 26025, 81427, 254777, 797175, 2494307, 7804529, 24419909, 76408475, 239077739, 748060606, 2340639096, 7323726778, 22915525377, 71701378526, 224349545236, 701976998795, 2196446204672, 6872555567553, 21503836486190, 67284284442622, 210528708959146
Offset: 0
Keywords
Examples
The a(4)=28 skew partitions of 4 are 01: [[4], []] 02: [[3, 1], []] 03: [[4, 1], [1]] 04: [[2, 2], []] 05: [[3, 2], [1]] 06: [[4, 2], [2]] 07: [[2, 1, 1], []] 08: [[3, 2, 1], [1, 1]] 09: [[3, 1, 1], [1]] 10: [[4, 2, 1], [2, 1]] 11: [[3, 3], [2]] 12: [[4, 3], [3]] 13: [[2, 2, 1], [1]] 14: [[3, 3, 1], [2, 1]] 15: [[3, 2, 1], [2]] 16: [[4, 3, 1], [3, 1]] 17: [[2, 2, 2], [1, 1]] 18: [[3, 3, 2], [2, 2]] 19: [[3, 2, 2], [2, 1]] 20: [[4, 3, 2], [3, 2]] 21: [[1, 1, 1, 1], []] 22: [[2, 2, 2, 1], [1, 1, 1]] 23: [[2, 2, 1, 1], [1, 1]] 24: [[3, 3, 2, 1], [2, 2, 1]] 25: [[2, 1, 1, 1], [1]] 26: [[3, 2, 2, 1], [2, 1, 1]] 27: [[3, 2, 1, 1], [2, 1]] 28: [[4, 3, 2, 1], [3, 2, 1]]
Links
- Sage Development Team, Skew Partitions, Sage Reference Manual.
Programs
-
PARI
\\ The following program is significantly faster. A225114(n)= { my( C=vector(n, j, 1) ); my(m=n, z, t, ret); while ( 1, /* for all compositions C[1..m] of n */ \\ print( vector(m, n, C[n] ) ); /* print composition */ t = prod(j=2,m, min(C[j-1], C[j]) + 1 ); /* A225114 */ \\ t = prod(j=2,m, min(C[j-1], C[j]) + 0 ); /* A006958 */ \\ t = prod(j=2,m, C[j-1] + C[j] + 0 ); /* A059716 */ \\ t = prod(j=2,m, C[j-1] + C[j] + 1 ); /* A187077 */ \\ t = sum(j=2,m, C[j-1] > C[j] ); /* A045883 */ ret += t; if ( m<=1, break() ); /* last composition? */ /* create next composition: */ C[m-1] += 1; z = C[m]; C[m] = 1; m += z - 2; ); return(ret); } for (n=0, 30, print1(A225114(n),", ")); \\ Joerg Arndt, Jul 09 2013
-
Sage
[SkewPartitions(n).cardinality() for n in range(16)]
Formula
Conjectured g.f.: 1/(2 - 1/(1 - x/(1 - x/(1 - x^2/(1 - x^2/(1 - x^3/(1 - x^3/(1 - ...)))))))). - Mikhail Kurkov, Sep 03 2024
Extensions
Edited by Max Alekseyev, Dec 22 2015
Comments