A052483 Decimal expansion of Hausdorff dimension of Apollonian packing of circles.
1, 3, 0, 5, 6, 8, 6, 7, 2, 8, 0, 4, 9, 8, 7, 7, 1, 8, 4, 6, 4, 5, 9, 8, 6, 2, 0, 6, 8, 5, 1, 0, 4, 0, 8, 9, 1, 1, 0, 6, 0, 2, 6, 4, 4, 1, 4, 9, 6, 4, 6, 8, 2, 9, 6, 4, 4, 6, 1, 8, 8, 3, 8, 8, 9, 9, 6, 9, 8, 6, 4, 2, 0, 5, 0, 2, 9, 6, 9, 8, 6, 4, 5, 4, 5, 2, 1, 6, 1, 2, 3, 1, 5, 0, 5, 3, 8, 7, 1, 3, 2, 8, 0, 7, 9, 2, 4, 6, 6, 8
Offset: 1
Examples
1.3056867...
Links
- Zai-Qiao Bai and Steven R. Finch, Precise calculation of Hausdorff dimension of Apollonian gasket, Fractals (2018), doi:10.1142/S0218348X18500500.
- Roberto De Leo, A conjecture on the Hausdorff dimension of attractors of real self-projective Iterated Function Systems, Experimental Mathematics 24, 270 (2015), doi:10.1080/10586458.2014.987884.
- S. S. Manna and H. J. Herrmann, Precise determination of the fractal dimensions of Apollonian packing and space-filling bearings, J. Phys. A: Math. Gen. 24 (1991), L481-L490.
- MathOverflow, Hausdorff dimension of Apollonian circle packing, 1.305686729, 1.305688 or yet something else?.
- P. B. Thomas and D. Dhar, The Hausdorff dimension of the Apollonian packing of circles, J. Phys. A, 27 (1994), 2257-2268.
- Polina Vytnova and Caroline Wormell, Hausdorff dimension of the Apollonian gasket, Invent. math., 239 (2025), 909-946; arXiv: 2406.04922 [math.DS], 2024.
Crossrefs
Cf. A187089.
Extensions
More terms from Andrey Zabolotskiy, May 17 2018 from the paper by Zai-Qiao Bai and Steven R. Finch
More terms from Vytnova & Wormell added by Andrey Zabolotskiy, Nov 08 2023