A248930 Decimal expansion of c = 2*Product_{prime p == 3 (mod 4)} (1 - 2/(p*(p-1)^2)), a constant related to the problem of integral Apollonian circle packings.
1, 6, 4, 9, 3, 3, 7, 6, 8, 9, 0, 9, 8, 0, 3, 0, 7, 0, 1, 0, 2, 5, 9, 4, 2, 9, 3, 3, 3, 6, 0, 1, 7, 8, 9, 6, 3, 6, 6, 9, 2, 3, 5, 7, 6, 6, 2, 5, 6, 6, 1, 1, 4, 4, 9, 0, 5, 7, 7, 2, 4, 8, 8, 3, 8, 4, 2, 5, 6, 4, 5, 1, 8, 9, 4, 8, 0, 7, 7, 2, 5, 2, 0, 6, 9, 0, 2, 0, 4, 2, 4, 8, 5, 2, 5, 3, 6, 0, 1, 0, 2, 7, 0, 1, 7
Offset: 1
Examples
1.64933768909803...
Links
- Steven R. Finch, Apollonian circles with integer curvatures, p. 6. [Cached copy, with permission of the author]
- Elena Fuchs and Katherine Sanden, Some experiments with integral Apollonian circle packings, arXiv:1001.1406 [math.NT] p. 7.
Programs
-
Mathematica
kmax = 25; Do[ P[k] = Product[p = Prime[n]; If[Mod[p, 4] == 3, 1 - 2/(p*(p - 1)^2) // N[#, 40]&, 1], {n, 1, 2^k}]; Print["P(", k, ") = ", P[k]], {k, 10, kmax}]; c = 2*P[kmax]; RealDigits[c, 10, 15] // First (* -------------------------------------------------------------------------- *) $MaxExtraPrecision = 1000; digits = 121; f[p_] := (1 - 2/(p*(p - 1)^2)); coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]]; S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums); P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}]; m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*P[4, 3, m]; sump = sump + difp; m++]; RealDigits[Chop[N[2*Exp[sump], digits]], 10, digits - 1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)
Extensions
More digits from Vaclav Kotesovec, Jun 27 2020
Comments