cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187151 Number of walks of length n starting at origin and ending in first quadrant on a square lattice.

Original entry on oeis.org

1, 2, 8, 26, 108, 382, 1586, 5812, 24044, 89846, 370398, 1401292, 5759826, 21977516, 90111820, 345994216, 1415691244, 5461770406, 22308412934, 86392108636, 352334866238, 1368640564996, 5574504569620, 21708901408216, 88320660937298, 344680279929532, 1400902293406676
Offset: 0

Views

Author

Benjamin Phillabaum, Mar 05 2011

Keywords

Examples

			a(2) = {UU,UR,UD,RU,RR,RL,DU,LR}.
		

Programs

  • Mathematica
    CoefficientList[Series[(Exp[2x]+BesselI[0,2x])^2/4,{x,0,15}],x] * Range[0,15]!
    Table[2^(-2 + n) (2^n + 2 Hypergeometric2F1[(1 - n)/2, -(n/2), 1, 1] + (2^n Gamma[(1 + n)/2]^2 Mod[n + 1, 2])/(Pi Gamma[1 + n/2]^2)), {n, 0, 30}] (* Benedict W. J. Irwin, Aug 02 2016 *)
  • PARI
    x='x+O('x^33);
    Vec(serlaplace((exp(2*x)+besseli(0,2*x))^2/4)) /* Joerg Arndt, Mar 06 2011 */

Formula

E.g.f.: (exp(2*x)+I_0(2*x))^2/4 where I() is the Modified Bessel Function. - Benjamin Phillabaum, Mar 05 2011
Recurrence: (n-1)*n^2*(8*n^3 - 66*n^2 + 171*n - 139)*a(n) = 2*(n-1)^2*(32*n^4 - 288*n^3 + 886*n^2 - 1071*n + 396)*a(n-1) + 24*(2*n-3)*(4*n^4 - 37*n^3 + 114*n^2 - 136*n + 50)*a(n-2) - 32*(n-2)^2*(32*n^4 - 288*n^3 + 886*n^2 - 1071*n + 396)*a(n-3) + 128*(n-3)^2*(2*n-7)*(8*n^3 - 42*n^2 + 63*n - 26)*a(n-4). - Vaclav Kotesovec, Feb 24 2014
a(n) ~ 4^(n-1) * (1 + 2/sqrt(Pi*n)). - Vaclav Kotesovec, Feb 24 2014
From Benedict W. J. Irwin, Aug 02 2016: (Start)
Let b(n) = 2^(2n-2)+2^(n-1)*2F1((1-n)/2,-n/2;1;1).
For odd n, a(n) = b(n),
for even n, a(n) = b(n) + 2^(2n-2)*Gamma((n+1)/2)^2/Gamma(1+n/2)^2/Pi. (End)