A187207 Irregular triangle read by rows in which row n lists the k=A000005(n) divisors of n in decreasing order, followed by the lists of their absolute differences up to order k-1.
1, 2, 1, 1, 3, 1, 2, 4, 2, 1, 2, 1, 1, 5, 1, 4, 6, 3, 2, 1, 3, 1, 1, 2, 0, 2, 7, 1, 6, 8, 4, 2, 1, 4, 2, 1, 2, 1, 1, 9, 3, 1, 6, 2, 4, 10, 5, 2, 1, 5, 3, 1, 2, 2, 0, 11, 1, 10, 12, 6, 4, 3, 2, 1, 6, 2, 1, 1, 1, 4, 1, 0, 0, 3, 1, 0, 2, 1, 1, 13, 1, 12, 14, 7, 2, 1, 7, 5, 1, 2, 4, 2
Offset: 1
Examples
Triangle begins: [1]; [2, 1], [1]; [3, 1], [2]; [4, 2, 1], [2, 1], [1]; [5, 1], [4]; [6, 3, 2, 1], [3, 1, 1], [2, 0], [2]; [7, 1], [6]; [8, 4, 2, 1], [4, 2, 1], [2, 1], [1]; [9, 3, 1], [6, 2], [4]; [10, 5, 2, 1], [5, 3, 1], [2, 2], [0]; The terms of each row can form a regular triangle, for example row 10: 10, 5, 2, 1; . 5, 3, 1; . 2, 2; . 0;
Links
- Alois P. Heinz, Rows n = 1..350, flattened
Crossrefs
Programs
-
Maple
with(numtheory): DD:= l-> [seq(abs(l[i]-l[i-1]), i=2..nops(l))]: T:= proc(n) local l; l:= sort([divisors(n)[]], `>`); seq((DD@@i)(l)[], i=0..nops(l)-1); end: seq(T(n), n=1..20); # Alois P. Heinz, Aug 03 2011
-
Mathematica
row[n_] := (dd = Divisors[n]; Table[Differences[dd, k] // Reverse // Abs, {k, 0, Length[dd]-1}]); Table[row[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, May 18 2016 *)