A187219 Number of partitions of n that do not contain parts less than the smallest part of the partitions of n-1.
1, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 34, 41, 55, 66, 88, 105, 137, 165, 210, 253, 320, 383, 478, 574, 708, 847, 1039, 1238, 1507, 1794, 2167, 2573, 3094, 3660, 4378, 5170, 6153, 7245, 8591, 10087, 11914, 13959, 16424, 19196, 22519, 26252, 30701, 35717
Offset: 1
Keywords
Examples
From _Omar E. Pol_, Aug 13 2013: (Start) Illustration of initial terms as number of regions: . _ _ _ _ _ _ . |_ _ _ | . |_ _ _|_ | . |_ _ | | . _ _ _ _ _ |_ _|_ _|_ | . |_ _ _ | | | . _ _ _ _ |_ _ _|_ | | | . |_ _ | | | | | . _ _ _ |_ _|_ | | | | | . _ _ |_ _ | | | | | | | . _ |_ | | | | | | | | | . |_| |_| |_| |_| |_| |_| . . 1 1 1 2 2 4 . (End)
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Vincenzo Librandi)
- Omar E. Pol, Illustration of the seven regions of 5
Programs
-
Mathematica
Join[{1}, Drop[CoefficientList[Series[1 / Product[(1 - x^k)^1, {k, 2, 50}], {x, 0, 50}], x], 2]] (* Vincenzo Librandi, Feb 15 2018 *) A187219[nmax_]:=Join[{1},Differences[PartitionsP[Range[nmax]]]]; A187219[100] (* Paolo Xausa, Feb 17 2023 *)
Formula
a(n) = A083751(n) + 1. - Omar E. Pol, Mar 04 2012
a(n) = A002865(n), if n >= 2. - Omar E. Pol, Aug 13 2013
Extensions
Better definition from Omar E. Pol, Sep 04 2013
Comments