A187245 Number of permutations of [n] having no cycle with 2 alternating runs (it is assumed that the smallest element of the cycle is in the first position).
1, 1, 2, 5, 17, 78, 463, 3315, 27164, 247975, 2492539, 27422698, 328607417, 4266367567, 59686293284, 895068242601, 14320843215019, 243467476610732, 4382635181281015, 83272415871044649, 1665465961530365026, 34974843092354081119, 769445564105823722109
Offset: 0
Keywords
Examples
a(3)=5 because we have among the 6 permutations of {1,2,3} only 312=(132) has a cycle with 2 alternating runs.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
Crossrefs
Cf. A187244.
Programs
-
Maple
g := exp((4*exp(z)-exp(2*z)-3-2*z)*1/4)/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22); # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*binomial(n-1, j-1)* `if`(j=1, 1, (j-1)!-(2^(j-2)-1)), j=1..n)) end: seq(a(n), n=0..30); # Alois P. Heinz, Apr 15 2017
-
Mathematica
CoefficientList[Series[E^((4*E^x-E^(2*x)-3-2*x)/4)/(1-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Mar 15 2014 *)
Formula
E.g.f.: g(z)=exp[(4exp(z)-exp(2z)-3-2z)/4]/(1-z).
a(n) ~ exp(exp(1)-exp(2)/4-5/4) * n! = 0.68455780023755436... * n!. - Vaclav Kotesovec, Mar 15 2014
Comments