cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187245 Number of permutations of [n] having no cycle with 2 alternating runs (it is assumed that the smallest element of the cycle is in the first position).

Original entry on oeis.org

1, 1, 2, 5, 17, 78, 463, 3315, 27164, 247975, 2492539, 27422698, 328607417, 4266367567, 59686293284, 895068242601, 14320843215019, 243467476610732, 4382635181281015, 83272415871044649, 1665465961530365026, 34974843092354081119, 769445564105823722109
Offset: 0

Views

Author

Emeric Deutsch, Mar 07 2011

Keywords

Comments

a(n) = A187244(n,0).

Examples

			a(3)=5 because we have among the 6 permutations of {1,2,3} only 312=(132) has a cycle with 2 alternating runs.
		

Crossrefs

Cf. A187244.

Programs

  • Maple
    g := exp((4*exp(z)-exp(2*z)-3-2*z)*1/4)/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22);
    # second Maple program:
    a:= proc(n) option remember;
          `if`(n=0, 1, add(a(n-j)*binomial(n-1, j-1)*
          `if`(j=1, 1, (j-1)!-(2^(j-2)-1)), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 15 2017
  • Mathematica
    CoefficientList[Series[E^((4*E^x-E^(2*x)-3-2*x)/4)/(1-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Mar 15 2014 *)

Formula

E.g.f.: g(z)=exp[(4exp(z)-exp(2z)-3-2z)/4]/(1-z).
a(n) ~ exp(exp(1)-exp(2)/4-5/4) * n! = 0.68455780023755436... * n!. - Vaclav Kotesovec, Mar 15 2014