cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A187244 Triangle read by rows: T(n,k) is the number of permutations of [n] having k cycles with 2 alternating runs (it is assumed that the smallest element of the cycle is in the first position), 0<=k<=floor(n/3).

Original entry on oeis.org

1, 1, 2, 5, 1, 17, 7, 78, 42, 463, 247, 10, 3315, 1550, 175, 27164, 11049, 2107, 247975, 92596, 22029, 280, 2492539, 906427, 220734, 9100, 27422698, 10044963, 2264724, 184415, 328607417, 122314296, 25036462, 3028025, 15400, 4266367567, 1607778568, 307273681, 44800184, 800800
Offset: 0

Views

Author

Emeric Deutsch, Mar 07 2011

Keywords

Comments

Number of entries in row n is 1+floor(n/3).
Sum of entries in row n is n!.
T(n,0)=A187245(n).
Sum(k*T(n,k), k>=0) = A187246(n).

Examples

			T(4,1)=7 because we have (132)(4), (142)(3), (1)(243), (143)(2), (1432), (1243), and (1342).
Triangle starts:
1;
1;
2;
5,1;
17,7;
78,42;
463, 247, 10;
		

Crossrefs

Programs

  • Maple
    G := exp((1/4)*(t-1)*(2*z-4*exp(z)+exp(2*z)+3))/(1-z): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 13 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 13 do seq(coeff(P[n], t, k), k = 0 .. floor((1/3)*n)) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n) option remember; expand(
          `if`(n=0, 1, add(b(n-j)*binomial(n-1, j-1)*
          `if`(j=1, 1, (j-1)!+(2^(j-2)-1)*(x-1)), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Apr 15 2017
  • Mathematica
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - j]*Binomial[n - 1, j - 1]* If[j == 1, 1, (j - 1)! + (2^(j - 2) - 1)*(x - 1)], {j, 1, n}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n]];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, May 03 2017, after Alois P. Heinz *)

Formula

E.g.f.: G(t,z) = exp[(1/4)(t-1)(2z-4exp(z)+exp(2z)+3)]/(1-z).
The 4-variate g.f. H(u,v,w,z) (exponential with respect z), where u marks number of cycles with 1 alternating run, v marks number of cycles with 2 alternating runs, w marks the number of all cycles, and z marks the size of the permutation, is given by
H(u,v,w,z)=exp[(1/4)w((v-1)(exp(2z)+2z)+4(u-v)exp(z)+1-4u+3v)]/(1-z)^w.
We have G(t,z)=H(1,t,1,z).

A187252 Number of cycles with at least 3 alternating runs in all permutations of [n] (it is assumed that the smallest element of a cycle is in the first position).

Original entry on oeis.org

0, 0, 0, 0, 2, 26, 260, 2508, 25040, 265552, 3018144, 36827872, 481850240, 6743052672, 100629754112, 1596624594688, 26853667866624, 477435143587840, 8949520012611584, 176443253945217024, 3650510179312910336, 79093615773747232768, 1791150489194147512320
Offset: 0

Views

Author

Emeric Deutsch, Mar 08 2011

Keywords

Comments

a(n) = Sum_{k>=0} k * A187250(n,k).

Examples

			a(4) = 2 because among the permutations of {1,2,3,4} only 3421=(1324) and 4312=(1423) have cycles with more than 2 alternating runs.
		

Crossrefs

Programs

  • Maple
    g := ((1-2*z-exp(2*z)-4*ln(1-z))*1/4)/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22);
  • PARI
    { my(z='z+O('z^33)); concat( [0,0,0,0], Vec(serlaplace(-(1/4)*(2*z-1+exp(2*z)+4*log(1-z))/(1-z)))) } \\ Joerg Arndt, Apr 16 2017

Formula

E.g.f.: g(z) = -(1/4)*(2*z - 1 + exp(2*z) + 4*log(1-z)) / (1-z).
a(n) ~ n! * log(n) * (1 + (gamma - (1+exp(2))/4) / log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 10 2021
Conjecture D-finite with recurrence a(n) +(-2*n-3)*a(n-1) +(n+7)*(n-1)*a(n-2) +4*(-n^2+2*n+1)*a(n-3) +4*(n-3)^2*a(n-4)=0. - R. J. Mathar, Jul 22 2022
Showing 1-2 of 2 results.