cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187247 Triangle read by rows: T(n,k) is the number of permutations of [n] having k cycles with at most 2 alternating runs (it is assumed that the smallest element of the cycle is in the first position), 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 2, 4, 11, 6, 1, 16, 18, 40, 35, 10, 1, 104, 142, 178, 195, 85, 15, 1, 688, 1236, 1106, 1148, 665, 175, 21, 1, 5116, 10832, 9300, 7728, 5173, 1820, 322, 28, 1, 44224, 98492, 91680, 63284, 42168, 18165, 4284, 546, 36, 1, 438560, 964172, 974924, 627420, 378620, 181797, 53361, 9030, 870, 45, 1
Offset: 0

Views

Author

Emeric Deutsch, Mar 07 2011

Keywords

Comments

Sum of entries in row n is n!.
T(n,0) = A187248(n).
Sum(k*T(n,k),k>=0) = A187249(n).

Examples

			T(3,2)=3 because we have (1)(23), (12)(3), and (13)(2).
T(4,0)=2 because we have (1423) and (1324).
T(4,1)=4 because we have (1234), (1243), (1342), and (1432).
Triangle starts:
1;
0,1;
0,1,1;
0,2,3,1;
2,4,11,6,1;
16,18,40,35,10,1;
		

Crossrefs

Programs

  • Maple
    G := exp((1/4)*(t-1)*(2*z-1+exp(2*z)))/(1-z): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 13 do P[n] := sort(expand(factorial(n) * coeff(Gser, z, n))) end do: for n from 0 to 10 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n) option remember; expand(
          `if`(n=0, 1, add(b(n-j)*binomial(n-1, j-1)*
          `if`(j=1, x, (j-1)!+2^(j-2)*(x-1)), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Apr 15 2017
  • Mathematica
    b[n_] := b[n] = Expand[If[n==0, 1, Sum[b[n-j]*Binomial[n-1, j-1]*If[j==1, x, (j-1)! + 2^(j-2)*(x-1)], {j, 1, n}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 18 2017, after Alois P. Heinz *)

Formula

E.g.f.: G(t,z) = exp[(1/4)(t-1)(2z - 1 + exp(2z))]/(1-z).
The 4-variate g.f. H(u,v,w,z) (exponential with respect z), where u marks number of cycles with 1 alternating run, v marks number of cycles with 2 alternating runs, w marks the number of all cycles, and z marks the size of the permutation, is given by
H(u,v,w,z) = exp[(1/4)w((v-1)(exp(2z)+2z)+4(u-v)exp(z)+1-4u+3v)]/(1-z)^w.
We have G(t,z) = H(t,t,1,z).