A187248 Number of permutations of [n] having only cycles with at least 3 alternating runs (it is assumed that the smallest element of the cycle is in the first position).
1, 0, 0, 0, 2, 16, 104, 688, 5116, 44224, 438560, 4851136, 58603544, 764606016, 10715043104, 160692920256, 2570016145680, 43678554864128, 786135111482112, 14936420654180864, 298733557232591136, 6273502048592506112, 138018105454095739008, 3174423293668325353216
Offset: 0
Keywords
Examples
a(4)=2 because we have (1423) and (1324).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450
Crossrefs
Cf. A187247.
Programs
-
Maple
g := exp((1-2*z-exp(2*z))*1/4)/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 23); # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*binomial(n-1, j-1)* `if`(j=1, 0, (j-1)!-2^(j-2)), j=1..n)) end: seq(a(n), n=0..30); # Alois P. Heinz, Apr 15 2017
-
Mathematica
a[n_] := a[n] = If[n == 0, 1, Sum[a[n-j]*Binomial[n-1, j-1]* If[j == 1, 0, (j-1)! - 2^(j-2)], {j, 1, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 16 2018, after Alois P. Heinz *)
Formula
E.g.f.: g(z) = exp[(1-2z-exp(2z))/4]/(1-z).
a(n) ~ exp((-1-exp(2))/4) * n!. - Vaclav Kotesovec, Mar 18 2014
Comments