cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187248 Number of permutations of [n] having only cycles with at least 3 alternating runs (it is assumed that the smallest element of the cycle is in the first position).

Original entry on oeis.org

1, 0, 0, 0, 2, 16, 104, 688, 5116, 44224, 438560, 4851136, 58603544, 764606016, 10715043104, 160692920256, 2570016145680, 43678554864128, 786135111482112, 14936420654180864, 298733557232591136, 6273502048592506112, 138018105454095739008, 3174423293668325353216
Offset: 0

Views

Author

Emeric Deutsch, Mar 07 2011

Keywords

Comments

a(n) = A187247(n,0).

Examples

			a(4)=2 because we have (1423) and (1324).
		

Crossrefs

Cf. A187247.

Programs

  • Maple
    g := exp((1-2*z-exp(2*z))*1/4)/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 23);
    # second Maple program:
    a:= proc(n) option remember;
          `if`(n=0, 1, add(a(n-j)*binomial(n-1, j-1)*
          `if`(j=1, 0, (j-1)!-2^(j-2)), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 15 2017
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[a[n-j]*Binomial[n-1, j-1]* If[j == 1, 0, (j-1)! - 2^(j-2)], {j, 1, n}]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 16 2018, after Alois P. Heinz *)

Formula

E.g.f.: g(z) = exp[(1-2z-exp(2z))/4]/(1-z).
a(n) ~ exp((-1-exp(2))/4) * n!. - Vaclav Kotesovec, Mar 18 2014