cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187254 Number of 3-noncrossing RNA structures over 2n vertices with no isolated vertices.

Original entry on oeis.org

1, 0, 1, 4, 22, 139, 979, 7484, 61018, 523995, 4696277, 43623618, 417729564, 4106089683, 41289287337, 423556384020, 4422308778458, 46904447607369, 504544306691569, 5496706186024364, 60576765646658782, 674624324569952719, 7585425185883023881
Offset: 0

Views

Author

Emeric Deutsch, Apr 24 2011

Keywords

Examples

			a(3) = 4 because we have ABACBC, ABCBAC, ABCACB, and ABCBCA, where identically labeled vertices are assumed to be joined by an arc.
		

Crossrefs

Programs

  • Maple
    c := n -> binomial(2*n, n)/(n + 1): a := n -> add((-1)^j*binomial(2*n-j, j)*(c(n-j)*c(n-j+2) - c(n-j+1)^2), j = 0..n): seq(a(n), n = 0 .. 22);
  • Mathematica
    Table[Sum[(-1)^j*Binomial[2*n-j,j] * (CatalanNumber[n-j]*CatalanNumber[n-j+2] - CatalanNumber[n-j+1]^2), {j,0,n}], {n,0,25}] (* Vaclav Kotesovec, Dec 10 2021 *)

Formula

a(n) = Sum_{j=0..n} (-1)^j*binomial(2n-j,j)*(c(n-j)*c(n-j+2) - c(n-j+1)^2), where c(i) = A000108(i) are the Catalan numbers.
a(n) = A187253(2*n, 0).
a(n) ~ 27 * (1 + sqrt(3))^(4*n + 2) / (Pi * n^5 * 2^(2*n + 4)). - Vaclav Kotesovec, Dec 10 2021
D-finite with recurrence (n+3)*(n+2)*a(n) + 2*(-7*n^2-2)*a(n-1) + 2*(-2*n+3)*a(n-2) + 2*(7*n^2-42*n+65)*a(n-3) - (n-5)*(n-6)*a(n-4) = 0. - R. J. Mathar, Jul 22 2022
G.f.: (1/4)*(x + 9 - (1 - 14*x + x^2)^(3/2)/x^2*hypergeom([-3/2, 5/2], [2], -16*x/(1 - 14*x + x^2))). - Mark van Hoeij, Nov 10 2022
a(n) = A358119(n) - A358118(n), (see first formula). - Peter Luschny, Nov 11 2022
Maple (depending on the version) gives the third-order recurrence (n - 5)*(2*n - 1)*(n - 4)*a(n - 3) - (n - 1)*(13*n - 24)*(2*n - 3)*a(n - 2) - (n - 1)*(2*n - 1)*(13*n - 2)*a(n - 1) + (n + 3)*(n + 2)*(2*n - 3)*a(n) = 0. - Peter Bala, Nov 11 2022