cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187296 T(n,k)=Number of n-step one space leftwards or up, two space rightwards or down asymmetric rook's tours on a kXk board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 4, 0, 16, 18, 2, 0, 25, 40, 36, 0, 0, 36, 70, 98, 54, 0, 0, 49, 108, 198, 196, 90, 0, 0, 64, 154, 330, 480, 416, 144, 0, 0, 81, 208, 494, 876, 1208, 884, 108, 0, 0, 100, 270, 690, 1398, 2400, 3006, 1368, 72, 0, 0, 121, 340, 918, 2036, 4092, 6520, 6264, 2028, 54
Offset: 1

Views

Author

R. H. Hardin Mar 08 2011

Keywords

Comments

Table starts
.1.4...9...16....25.....36.....49......64......81.....100.....121.....144
.0.4..18...40....70....108....154.....208.....270.....340.....418.....504
.0.2..36...98...198....330....494.....690.....918....1178....1470....1794
.0.0..54..196...480....876...1398....2036....2790....3660....4646....5748
.0.0..90..416..1208...2400...4092....6208....8766...11752...15166...19008
.0.0.144..884..3006...6520..11896...18832...27478...37696...49508...62896
.0.0.108.1368..6264..15596..31172...52256...79634..112568..151266..195512
.0.0..72.2028.12778..37124..81362..145100..231552..338044..465734..613212
.0.0..54.2968.25716..87432.209700..399524..668522.1010572.1430378.1921532
.0.0...0.3096.44824.187924.505878.1044900.1847506.2912204.4254568

Examples

			Some n=4 solutions for 4X4
..0..0..0..0....0..0..0..0....4..3..2..0....0..0..0..4....0..1..0..0
..0..0..0..1....3..2..4..0....0..0..1..0....0..2..0..3....0..3..0..4
..0..0..4..3....0..1..0..0....0..0..0..0....0..1..0..0....0..2..0..0
..0..0..0..2....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
		

Formula

Empirical: T(1,k) = k^2
Empirical: T(2,k) = 4*k^2 - 6*k for k>1
Empirical: T(3,k) = 16*k^2 - 44*k + 18 for k>3
Empirical: T(4,k) = 58*k^2 - 232*k + 180 for k>5
Empirical: T(5,k) = 214*k^2 - 1080*k + 1152 for k>7
Empirical: T(6,k) = 788*k^2 - 4736*k + 6256 for k>9
Empirical: T(7,k) = 2776*k^2 - 19580*k + 30728 for k>11
Empirical: T(8,k) = 9878*k^2 - 79388*k + 143388 for k>13
Empirical: T(9,k) = 35254*k^2 - 316744*k + 644876 for k>15
Empirical: T(10,k) = 124248*k^2 - 1238146*k + 2807812 for k>17