A187296 T(n,k)=Number of n-step one space leftwards or up, two space rightwards or down asymmetric rook's tours on a kXk board summed over all starting positions.
1, 4, 0, 9, 4, 0, 16, 18, 2, 0, 25, 40, 36, 0, 0, 36, 70, 98, 54, 0, 0, 49, 108, 198, 196, 90, 0, 0, 64, 154, 330, 480, 416, 144, 0, 0, 81, 208, 494, 876, 1208, 884, 108, 0, 0, 100, 270, 690, 1398, 2400, 3006, 1368, 72, 0, 0, 121, 340, 918, 2036, 4092, 6520, 6264, 2028, 54
Offset: 1
Examples
Some n=4 solutions for 4X4 ..0..0..0..0....0..0..0..0....4..3..2..0....0..0..0..4....0..1..0..0 ..0..0..0..1....3..2..4..0....0..0..1..0....0..2..0..3....0..3..0..4 ..0..0..4..3....0..1..0..0....0..0..0..0....0..1..0..0....0..2..0..0 ..0..0..0..2....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..201
Formula
Empirical: T(1,k) = k^2
Empirical: T(2,k) = 4*k^2 - 6*k for k>1
Empirical: T(3,k) = 16*k^2 - 44*k + 18 for k>3
Empirical: T(4,k) = 58*k^2 - 232*k + 180 for k>5
Empirical: T(5,k) = 214*k^2 - 1080*k + 1152 for k>7
Empirical: T(6,k) = 788*k^2 - 4736*k + 6256 for k>9
Empirical: T(7,k) = 2776*k^2 - 19580*k + 30728 for k>11
Empirical: T(8,k) = 9878*k^2 - 79388*k + 143388 for k>13
Empirical: T(9,k) = 35254*k^2 - 316744*k + 644876 for k>15
Empirical: T(10,k) = 124248*k^2 - 1238146*k + 2807812 for k>17
Comments