cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A187297 Number of 2-step one space leftwards or up, two space rightwards or down asymmetric rook's tours on an n X n board summed over all starting positions.

Original entry on oeis.org

0, 4, 18, 40, 70, 108, 154, 208, 270, 340, 418, 504, 598, 700, 810, 928, 1054, 1188, 1330, 1480, 1638, 1804, 1978, 2160, 2350, 2548, 2754, 2968, 3190, 3420, 3658, 3904, 4158, 4420, 4690, 4968, 5254, 5548, 5850, 6160, 6478, 6804, 7138, 7480, 7830, 8188, 8554
Offset: 1

Views

Author

R. H. Hardin, Mar 08 2011

Keywords

Comments

Row 2 of A187296.
For n>=2, a(n) equals the absolute value of 2^n times the x-coefficient of the characteristic polynomial of the n X n matrix with 1/2's along the main diagonal and 1's everywhere else (see Mathematica code below). - John M. Campbell, Jun 21 2011
If (n,2) is an arrangement of n pairs of parallel lines in general position (no two lines from distinct pairs are parallel and no three lines from distinct pairs intersect) then a(n) gives the number of bounded edges in the arrangement. Wetzel and Alexanderson refer to this arrangement as plaid in general position. - Anthony Hernandez, Aug 08 2016

Programs

  • Mathematica
    Table[Abs[ 2^(n)*Coefficient[ CharacteristicPolynomial[ Array[KroneckerDelta[#1, #2]*(1/2 - 1) + 1 &, {n, n}], x], x]], {n, 2, 55}] (* John M. Campbell, Jun 21 2011 *)
    Table[If[n == 0, 0, n + n^2 - 2], {n, 0, 200, 2}]  (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *)
    CoefficientList[Series[2 x (2 + 3 x - x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Feb 08 2014 *)
  • PARI
    a(n)=if(n>1, 4*n^2-6*n, 0) \\ Charles R Greathouse IV, Aug 08 2016

Formula

Empirical: a(n) = 4*n^2 - 6*n = 2*A014107(n) for n>1 (this is now known to be correct - see other comments).
a(n) = +3*a(n-1) -3*a(n-2) +1*a(n-3).
G.f.: 2*x^2*(2+3*x-x^2)/(1-x)^3.

A187298 Number of 3-step one space leftwards or up, two space rightwards or down asymmetric rook's tours on an n X n board summed over all starting positions.

Original entry on oeis.org

0, 2, 36, 98, 198, 330, 494, 690, 918, 1178, 1470, 1794, 2150, 2538, 2958, 3410, 3894, 4410, 4958, 5538, 6150, 6794, 7470, 8178, 8918, 9690, 10494, 11330, 12198, 13098, 14030, 14994, 15990, 17018, 18078, 19170, 20294, 21450, 22638, 23858, 25110, 26394
Offset: 1

Views

Author

R. H. Hardin, Mar 08 2011

Keywords

Comments

Row 3 of A187296.

Examples

			Some solutions for 4 X 4:
..0..1..0..0....0..0..0..0....0..0..0..0....0..0..1..0....0..0..0..3
..0..0..0..0....1..0..0..0....0..1..0..0....0..0..3..0....0..1..0..2
..3..2..0..0....0..0..0..0....0..3..0..0....0..0..2..0....0..0..0..0
..0..0..0..0....2..0..3..0....0..2..0..0....0..0..0..0....0..0..0..0
		

Crossrefs

Cf. A187296.

Formula

Empirical: a(n) = 16*n^2 - 44*n + 18 for n>3.
Conjectures from Colin Barker, Apr 23 2018: (Start)
G.f.: 2*x^2*(1 + 15*x - 2*x^2 + 5*x^3 - 3*x^4) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6.
(End)

A187299 Number of 4-step one space leftwards or up, two space rightwards or down asymmetric rook's tours on an n X n board summed over all starting positions.

Original entry on oeis.org

0, 0, 54, 196, 480, 876, 1398, 2036, 2790, 3660, 4646, 5748, 6966, 8300, 9750, 11316, 12998, 14796, 16710, 18740, 20886, 23148, 25526, 28020, 30630, 33356, 36198, 39156, 42230, 45420, 48726, 52148, 55686, 59340, 63110, 66996, 70998, 75116, 79350, 83700
Offset: 1

Views

Author

R. H. Hardin, Mar 08 2011

Keywords

Comments

Row 4 of A187296.

Examples

			Some solutions for 4 X 4:
..1..0..0..0....0..0..0..0....0..0..1..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..2..1..0....2..4..3..0
..2..4..3..0....1..3..2..4....4..3..2..0....0..4..0..0....1..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..3..0..0....0..0..0..0
		

Crossrefs

Cf. A187296.

Formula

Empirical: a(n) = 58*n^2 - 232*n + 180 for n>5.
Conjectures from Colin Barker, Apr 23 2018: (Start)
G.f.: 2*x^3*(27 + 17*x + 27*x^2 - 15*x^3 + 7*x^4 - 5*x^5) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>8.
(End)

A187300 Number of 5-step one space leftwards or up, two space rightwards or down asymmetric rook's tours on an n X n board summed over all starting positions.

Original entry on oeis.org

0, 0, 90, 416, 1208, 2400, 4092, 6208, 8766, 11752, 15166, 19008, 23278, 27976, 33102, 38656, 44638, 51048, 57886, 65152, 72846, 80968, 89518, 98496, 107902, 117736, 127998, 138688, 149806, 161352, 173326, 185728, 198558, 211816, 225502, 239616
Offset: 1

Views

Author

R. H. Hardin, Mar 08 2011

Keywords

Comments

Row 5 of A187296.

Examples

			Some solutions for 4 X 4:
..0..0..0..0....0..4..3..2....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..2..1....0..0..0..1....5..4..3..0....5..1..0..0....3..0..4..0
..0..0..0..0....0..5..0..0....0..0..2..0....4..0..0..0....2..0..0..0
..0..4..3..5....0..0..0..0....0..0..1..0....3..2..0..0....1..0..5..0
		

Crossrefs

Cf. A187296.

Formula

Empirical: a(n) = 214*n^2 - 1080*n + 1152 for n>7.
Conjectures from Colin Barker, Apr 23 2018: (Start)
G.f.: 2*x^3*(45 + 73*x + 115*x^2 - 33*x^3 + 50*x^4 - 38*x^5 + 9*x^6 - 7*x^7) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>10.
(End)

A187301 Number of 6-step one space leftwards or up, two space rightwards or down asymmetric rook's tours on an n X n board summed over all starting positions.

Original entry on oeis.org

0, 0, 144, 884, 3006, 6520, 11896, 18832, 27478, 37696, 49508, 62896, 77860, 94400, 112516, 132208, 153476, 176320, 200740, 226736, 254308, 283456, 314180, 346480, 380356, 415808, 452836, 491440, 531620, 573376, 616708, 661616, 708100, 756160
Offset: 1

Views

Author

R. H. Hardin, Mar 08 2011

Keywords

Comments

Row 6 of A187296.

Examples

			Some solutions for 4 X 4:
..0..2..1..3....0..2..1..3....0..5..0..6....0..1..0..0....6..5..0..0
..0..0..0..5....0..0..6..5....2..4..3..0....0..0..5..0....0..4..0..0
..0..0..0..4....0..0..0..4....1..0..0..0....0..2..4..3....1..3..2..0
..0..0..0..6....0..0..0..0....0..0..0..0....0..0..6..0....0..0..0..0
		

Crossrefs

Cf. A187296.

Formula

Empirical: a(n) = 788*n^2 - 4736*n + 6256 for n>9.
Conjectures from Colin Barker, Apr 23 2018: (Start)
G.f.: 2*x^3*(72 + 226*x + 393*x^2 + 5*x^3 + 235*x^4 - 151*x^5 + 75*x^6 - 69*x^7 + 11*x^8 - 9*x^9) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>12.
(End)

A187302 Number of 7-step one space leftwards or up, two space rightwards or down asymmetric rook's tours on an n X n board summed over all starting positions.

Original entry on oeis.org

0, 0, 108, 1368, 6264, 15596, 31172, 52256, 79634, 112568, 151266, 195512, 245332, 300704, 361628, 428104, 500132, 577712, 660844, 749528, 843764, 943552, 1048892, 1159784, 1276228, 1398224, 1525772, 1658872, 1797524, 1941728, 2091484, 2246792
Offset: 1

Views

Author

R. H. Hardin, Mar 08 2011

Keywords

Comments

Row 7 of A187296.

Examples

			Some solutions for 4 X 4:
..0..0..0..0....0..0..2..1....0..0..0..0....0..2..1..3....0..0..0..0
..5..4..6..0....0..5..7..6....0..4..3..5....0..7..0..0....7..0..0..1
..0..3..2..1....0..4..3..0....1..0..2..0....0..6..5..4....6..5..0..0
..0..0..7..0....0..0..0..0....0..0..7..6....0..0..0..0....0..4..3..2
		

Crossrefs

Cf. A187296.

Formula

Empirical: a(n) = 2776*n^2 - 19580*n + 30728 for n>11.
Conjectures from Colin Barker, Apr 23 2018: (Start)
G.f.: 2*x^3*(54 + 522*x + 1242*x^2 + 400*x^3 + 904*x^4 - 368*x^5 + 393*x^6 - 369*x^7 + 104*x^8 - 108*x^9 + 13*x^10 - 11*x^11) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>14.
(End)

A187303 Number of 8-step one space leftwards or up, two space rightwards or down asymmetric rook's tours on an n X n board summed over all starting positions.

Original entry on oeis.org

0, 0, 72, 2028, 12778, 37124, 81362, 145100, 231552, 338044, 465734, 613212, 780752, 968044, 1175118, 1401948, 1648534, 1914876, 2200974, 2506828, 2832438, 3177804, 3542926, 3927804, 4332438, 4756828, 5200974, 5664876, 6148534, 6651948, 7175118
Offset: 1

Views

Author

R. H. Hardin, Mar 08 2011

Keywords

Comments

Row 8 of A187296.

Examples

			Some solutions for 4 X 4:
..0..1..0..0....1..6..5..0....0..6..5..7....6..0..7..0....8..7..6..2
..0..6..5..7....0..0..4..0....0..0..4..0....5..1..0..0....0..0..5..1
..3..2..4..0....2..7..3..8....2..1..3..8....4..0..8..0....0..0..4..3
..0..0..0..8....0..0..0..0....0..0..0..0....3..2..0..0....0..0..0..0
		

Crossrefs

Cf. A187296.

Formula

Empirical: a(n) = 9878*n^2 - 79388*n + 143388 for n>13.
Conjectures from Colin Barker, Apr 23 2018: (Start)
G.f.: 2*x^3*(36 + 906*x + 3455*x^2 + 2401*x^3 + 3148*x^4 - 196*x^5 + 1607*x^6 - 1337*x^7 + 579*x^8 - 705*x^9 + 137*x^10 - 155*x^11 + 15*x^12 - 13*x^13) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>16.
(End)

A187304 Number of 9-step one space leftwards or up, two space rightwards or down asymmetric rook's tours on an n X n board summed over all starting positions.

Original entry on oeis.org

0, 0, 54, 2968, 25716, 87432, 209700, 399524, 668522, 1010572, 1430378, 1921532, 2485628, 3120300, 3825896, 4601996, 5448634, 6365780, 7353434, 8411596, 9540266, 10739444, 12009130, 13349324, 14760026, 16241236, 17792954, 19415180, 21107914
Offset: 1

Views

Author

R. H. Hardin Mar 08 2011

Keywords

Comments

Row 9 of A187296

Formula

Empirical: a(n) = 35254*n^2 - 316744*n + 644876 for n>15

A187305 Number of 10-step one space leftwards or up, two space rightwards or down asymmetric rook's tours on an n X n board summed over all starting positions.

Original entry on oeis.org

0, 0, 0, 3096, 44824, 187924, 505878, 1044900, 1847506, 2912204, 4254568, 5853664, 7715596, 9827696, 12192058, 14805028, 17667036, 20777536, 24136566, 27744092, 31600114, 35704632, 40057646, 44659156, 49509162, 54607664, 59954662, 65550156
Offset: 1

Views

Author

R. H. Hardin Mar 08 2011

Keywords

Comments

Row 10 of A187296

Formula

Empirical: a(n) = 124248*n^2 - 1238146*n + 2807812 for n>17
Showing 1-9 of 9 results.