A187360 Coefficient array for minimal polynomials of 2*cos(Pi/n) (rising powers of x).
2, 1, 0, 1, -1, 1, -2, 0, 1, -1, -1, 1, -3, 0, 1, 1, -2, -1, 1, 2, 0, -4, 0, 1, -1, -3, 0, 1, 5, 0, -5, 0, 1, -1, 3, 3, -4, -1, 1, 1, 0, -4, 0, 1, -1, -3, 6, 4, -5, -1, 1, -7, 0, 14, 0, -7, 0, 1, 1, -4, -4, 1, 1, 2, 0, -16, 0, 20, 0, -8, 0, 1, 1, 4, -10, -10, 15, 6, -7, -1, 1
Offset: 1
Examples
n=1: 2, 1; n=2: 0, 1; n=3: -1, 1; n=4: -2, 0, 1; n=5: -1,-1, 1; n=6: -3, 0, 1; n=7: 1,-2,-1, 1; n=8: 2, 0,-4, 0, 1; n=9: -1,-3, 0, 1; n=10: 5, 0,-5, 0, 1; ... C(2,x) = R(1,x), C(4,x) = R(2,x), C(8,x) = R(4,x),... with R(n,x) from A127672. - _Wolfdieter Lang_, Sep 15 2011
Links
- Robert Israel, Table of n, a(n) for n = 1..10064 (first 220 rows, flattened)
- Wolfdieter Lang, Minimal Polynomials of 2*cos(pi/n)
- Wolfdieter Lang, The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon, arXiv:1210.1018 [math.GR], 2012-2017.
- Wolfdieter Lang, On the Equivalence of Three Complete Cyclic Systems of Integers, arXiv:2008.04300 [math.NT], 2020.
Crossrefs
Programs
-
Maple
f:= proc(n) local P,z,j; P:= factor(evala(Norm(z-convert(2*cos(Pi/n),RootOf)))); if type(P,`^`) then P:= op(1,P) fi; seq(coeff(P,z,j),j=0..degree(P)); end proc: seq(f(n),n=1..20); # Robert Israel, Aug 04 2015
-
Mathematica
Flatten[ CoefficientList[ Table[ MinimalPolynomial[2*Cos[Pi/n], x], {n, 1, 17}], x]] (* Jean-François Alcover, Sep 26 2011 *)
-
PARI
halftot(n)=if(n<=2, 1, eulerphi(n)/2); \\ A023022 default(realprecision, 110); row(n) = Vecrev(algdep(2*cos(2*Pi/n), halftot(n))); \\ Michel Marcus, Sep 19 2023
Formula
a(n,m) = [x^m] C(n,x), n>=1, m=0..A055034(n), with the minimal (monic and integer) polynomial C(n,x) of 2*cos(Pi/n). See the comment above.
Comments