cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A187362 Pell trisection: Pell(3*n+2), n >= 0.

Original entry on oeis.org

2, 29, 408, 5741, 80782, 1136689, 15994428, 225058681, 3166815962, 44560482149, 627013566048, 8822750406821, 124145519261542, 1746860020068409, 24580185800219268, 345869461223138161, 4866752642924153522, 68480406462161287469, 963592443113182178088, 13558774610046711780701
Offset: 0

Views

Author

Wolfdieter Lang, Mar 09 2011

Keywords

Comments

For the general trisection of a sequence see a Wolfdieter Lang comment under A187357.

Crossrefs

Cf. A142588 (Pell(3n)), A187361 (Pell(3n+1)).

Programs

  • Mathematica
    Table[Fibonacci[3n + 2, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
  • PARI
    Vec((2+x)/(1-14*x-x^2) + O(x^20)) \\ Colin Barker, Jan 25 2016

Formula

a(n) = Pell(3*n+2), n >= 0, with Pell(n):=A000129(n).
O.g.f.: (2+x)/(1-14*x-x^2).
a(n) = 14*a(n-1) + a(n-2), a(-1)=1, a(0)=2.
a(n) = (((7-5*sqrt(2))^n*(-3+2*sqrt(2)) + (3+2*sqrt(2))*(7+5*sqrt(2))^n)) / (2*sqrt(2)). - Colin Barker, Jan 25 2016
Showing 1-1 of 1 results.