A187372 Numbers k such that the decimal digits of 1/k contain every digit at least once.
17, 19, 23, 29, 34, 38, 46, 47, 49, 51, 53, 57, 58, 59, 61, 68, 69, 71, 76, 83, 85, 87, 89, 92, 94, 95, 97, 98, 102, 103, 107, 109, 113, 114, 115, 116, 118, 119, 121, 122, 127, 129, 131, 133, 136, 138, 139, 141, 142, 145, 147, 149, 151, 152, 153, 157, 161, 163, 166, 167, 169, 170, 171, 173, 174, 177, 178, 179, 181, 183, 184, 188
Offset: 1
Examples
17 is in the sequence because 1/17 = .0588235294117647 0588235294117647 ... contains every digit at least once ; 31 is not in the sequence because 1/31 = .032258064516129 032258064516129... without the digit 7.
Crossrefs
Cf. A187614.
Programs
-
Maple
with(numtheory):Digits:=200:B:={0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: T:=array(1..250) : for p from 1 to 200 do:ind:=0:n:=floor(evalf(10^200/p)):l:=length(n):n0:=n:s:=0:for m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v : T[m]:=u:od: A:=convert(T, set):z:=nops(A):if A intersect B = B and ind=0 then ind:=1: printf(`%d, `, p):else fi:od:
-
Mathematica
A2 := {}; Do[ If[Length[Union[IntegerDigits[Floor[10^200/n]]]] == 10, A2 = Join[A2, {n}]], {n, 1, 200}]; Print[A2]