A187429 Expansion of q^(3/8) * a(q) / eta(q^3)^3 in powers of q where a() is a cubic AGM function.
1, 6, 0, 9, 24, 0, 27, 84, 0, 82, 222, 0, 207, 558, 0, 486, 1260, 0, 1055, 2724, 0, 2205, 5550, 0, 4374, 10944, 0, 8427, 20778, 0, 15696, 38448, 0, 28539, 69228, 0, 50630, 122118, 0, 88119, 210966, 0, 150417, 358356, 0, 252727, 598650, 0, 418068, 986022
Offset: 0
Keywords
Examples
G.f. = 1 + 6*x + 9*x^3 + 24*x^4 + 27*x^6 + 84*x^7 + 82*x^9 + 222*x^10 + ... G.f. = q^-3 + 6*q^5 + 9*q^21 + 24*q^29 + 27*q^45 + 84*q^53 + 82*q^69 + 222*q^77 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701.
Programs
-
Mathematica
a[n_] := Module[{A = x*O[x]^n}, SeriesCoefficient[(QPochhammer[x + A]^3 + 9*x*QPochhammer[x^9 + A]^3)/QPochhammer[x^3 + A]^4, {x, 0, n}]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 06 2015, adapted from PARI *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3) / eta(x^3 + A)^4, n))}