A187496 Let i be in {1,2,3,4} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3, p_4} = {-3,0,1,2}, n=3*r+p_i, and define a(-3)=0. Then a(n)=a(3*r+p_i) gives the quantity of H_(9,2,0) tiles in a subdivided H_(9,i,r) tile after linear scaling by the factor Q^r, where Q=sqrt(2*cos(Pi/9)).
1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 3, 1, 5, 1, 4, 1, 9, 5, 14, 6, 14, 7, 28, 20, 42, 27, 48, 34, 90, 75, 132, 109, 165, 143, 297, 274, 429, 417, 571, 560, 1000, 988, 1429, 1548, 1988, 2108, 3417, 3536, 4846, 5644, 6953, 7752, 11799, 12597, 16645
Offset: 0
References
- L. E. Jeffery, Unit-primitive matrices and rhombus substitution tilings, (in preparation).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,0,3,0,0,-2,0,0,-1).
Programs
-
Magma
I:=[1,0,0,0,1,0,2,0,1,0,3,1]; [n le 12 select I[n] else Self(n-3) + 3*Self(n-6) - 2*Self(n-9) - Self(n-12): n in [1..50]]; // G. C. Greubel, Apr 20 2018
-
Mathematica
LinearRecurrence[{0,0,1,0,0,3,0,0,-2,0,0,-1}, {1,0,0,0,1,0,2,0,1,0,3,1}, 50] (* G. C. Greubel, Apr 20 2018 *)
-
PARI
x='x+O('x^50); Vec((1-x^3+x^4-x^6-x^7+x^8)/(1-x^3-3*x^6 +2*x^9 +x^12)) \\ G. C. Greubel, Apr 20 2018
Formula
Recurrence: a(n) = a(n-3) +3*a(n-6) -2*a(n-9) -a(n-12), for n>=12, with initial conditions {a(m)}={1,0,0,0,1,0,2,0,1,0,3,1}, m=0,1,...,11.
G.f.: (1-x^3+x^4-x^6-x^7+x^8)/(1-x^3-3*x^6+2*x^9+x^12).
Comments