cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187496 Let i be in {1,2,3,4} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3, p_4} = {-3,0,1,2}, n=3*r+p_i, and define a(-3)=0. Then a(n)=a(3*r+p_i) gives the quantity of H_(9,2,0) tiles in a subdivided H_(9,i,r) tile after linear scaling by the factor Q^r, where Q=sqrt(2*cos(Pi/9)).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 3, 1, 5, 1, 4, 1, 9, 5, 14, 6, 14, 7, 28, 20, 42, 27, 48, 34, 90, 75, 132, 109, 165, 143, 297, 274, 429, 417, 571, 560, 1000, 988, 1429, 1548, 1988, 2108, 3417, 3536, 4846, 5644, 6953, 7752, 11799, 12597, 16645
Offset: 0

Views

Author

L. Edson Jeffery, Mar 17 2011

Keywords

Comments

(Start) See A187498 for supporting theory. Define the matrix
U_1=
(0 1 0 0)
(1 0 1 0)
(0 1 0 1)
(0 0 1 1).
Let r>=0, and let B_r be the r-th "block" defined by B_r={a(3*r-3),a(3*r),a(3*r+1),a(3*r+2)} with a(-3)=0. Note that B_r-B_(r-1)-3*B_(r-2)+2*B_(r-3)+B_(r-4)={0,0,0,0}, for r>=4, with initial conditions {B_k}={{0,1,0,0},{1,0,1,0},{0,2,0,1},{2,0,3,1}}, k=0,1,2,3. Let p={p_1,p_2,p_3,p_4}={-3,0,1,2}, n=3*r+p_i and M=(m_(i,j))=(U_1)^r, i,j=1,2,3,4. Then B_r corresponds component-wise to the second column of M, and a(n)=a(3*r+p_i)=m_(i,2) gives the quantity of H_(9,2,0) tiles that should appear in a subdivided H_(9,i,r) tile. (End)
Since a(3*r)=a(3*(r+1)-3) for all r, this sequence arises by concatenation of second-column entries m_(2,2), m_(3,2) and m_(4,2) from successive matrices M=(U_1)^r.

References

  • L. E. Jeffery, Unit-primitive matrices and rhombus substitution tilings, (in preparation).

Crossrefs

Programs

  • Magma
    I:=[1,0,0,0,1,0,2,0,1,0,3,1]; [n le 12 select I[n] else Self(n-3) + 3*Self(n-6) - 2*Self(n-9) - Self(n-12): n in [1..50]]; // G. C. Greubel, Apr 20 2018
  • Mathematica
    LinearRecurrence[{0,0,1,0,0,3,0,0,-2,0,0,-1}, {1,0,0,0,1,0,2,0,1,0,3,1}, 50] (* G. C. Greubel, Apr 20 2018 *)
  • PARI
    x='x+O('x^50); Vec((1-x^3+x^4-x^6-x^7+x^8)/(1-x^3-3*x^6 +2*x^9 +x^12)) \\ G. C. Greubel, Apr 20 2018
    

Formula

Recurrence: a(n) = a(n-3) +3*a(n-6) -2*a(n-9) -a(n-12), for n>=12, with initial conditions {a(m)}={1,0,0,0,1,0,2,0,1,0,3,1}, m=0,1,...,11.
G.f.: (1-x^3+x^4-x^6-x^7+x^8)/(1-x^3-3*x^6+2*x^9+x^12).