A187498 Let i be in {1,2,3,4} and let r >= 0 be an integer. Let p={p_1, p_2, p_3, p_4} = {-3,0,1,2}, n=3*r+p_i, and define a(-3)=0. Then a(n)=a(3*r+p_i) gives the quantity of H_(9,4,0) tiles in a subdivided H_(9,i,r) tile after linear scaling by the factor Q^r, where Q=sqrt(2*cos(Pi/9)).
0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 3, 3, 4, 4, 6, 5, 10, 10, 14, 15, 20, 20, 34, 35, 48, 55, 69, 75, 117, 124, 165, 199, 241, 274, 406, 440, 571, 714, 846, 988, 1417, 1560, 1988, 2548, 2977, 3536, 4965, 5525, 6953, 9061, 10490, 12597, 17443, 19551
Offset: 0
References
- L. E. Jeffery, Unit-primitive matrices and rhombus substitution tilings, (in preparation).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
A052931 := proc(n) if n < 0 then 0; else coeftayl(1/(1-3*x^2-x^3),x=0,n) ; end if; end proc: A052931a := proc(n) if n mod 3 = 0 then A052931(n/3) ; else 0 ; end if; end proc: A057078 := proc(n) op(1+(n mod 3),[1,0,-1]) ; end proc: A187498 := proc(n) -A057078(n) +A052931a(n) +2*A052931a(n-2) +A052931a(n-3) +3*A052931a(n-4) +2*A052931a(n-5) +A052931a(n-6) +3*A052931a(n-7) -A052931a(n-8) ; %/3 ; end proc: seq(A187498(n),n=0..20) ; # R. J. Mathar, Mar 22 2011
-
Mathematica
CoefficientList[Series[-x^2*(1 + x)*(x^6 + 3*x^4 + 2*x^2 + 1)/((1 + x + x^2)*(x^9 + 3*x^6 - 1)), {x, 0, 1000}], x] (* G. C. Greubel, Sep 23 2017 *)
-
PARI
x='x+O('x^50); Vec(-x^2*(1+x)*(x^6+3*x^4+2*x^2+1)/((1+x+x^2)*(x^9+3*x^6-1))) \\ G. C. Greubel, Sep 23 2017
Formula
Recurrence: a(n) = a(n-3) +3*a(n-6) -2*a(n-9) -a(n-12), for n >= 12, with initial conditions {a(m)} = {0,0,1,0,1,1,1,1,2,1,3,3}, m=0,1,...,11.
G.f.: -x^2*(1+x)*(x^6+3*x^4+2*x^2+1) / ( (1+x+x^2)*(x^9+3*x^6-1) ).
Comments