A187506 Let i be in {1,2,3,4} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3, p_4} = {-1,0,1,2}, n=3*r+p_i, and define a(-1)=0. Then a(n)=a(3*r+p_i) gives the quantity of H_(9,4,0) tiles in a subdivided H_(9,i,r) tile after linear scaling by the factor Q^r, where Q=sqrt(x^3-2*x) with x=2*cos(Pi/9).
0, 0, 1, 1, 1, 1, 2, 3, 4, 7, 9, 10, 19, 26, 30, 56, 75, 85, 160, 216, 246, 462, 622, 707, 1329, 1791, 2037, 3828, 5157, 5864, 11021, 14849, 16886, 31735, 42756, 48620, 91376, 123111, 139997, 263108, 354484, 403104, 757588, 1020696, 1160693, 2181389
Offset: 0
References
- L. E. Jeffery, Unit-primitive matrices and rhombus substitution tilings, (in preparation).
Links
- Index entries for linear recurrences with constant coefficients, signature (1,-1,3,-3,3,0,0,0,-1,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,-1,3,-3,3,0,0,0,-1,1,-1},{0,0,1,1,1,1,2,3,4,7,9},50] (* Harvey P. Dale, May 19 2015 *)
Formula
Recurrence: a(n)=2*a(n-3)+3*a(n-6)-a(n-9)-a(n-12), with initial conditions {a(m)}={0,0,1,1,1,2,3,4,7,10,19,26}, m=0,1,...,11.
G.f.: x^2*(1+x+x^2-x^3+x^5-x^6)/(1-2*x^3-3*x^6+x^9+x^12).
Comments