A187542 Convolutions of the central Lah numbers (A187535).
1, 4, 76, 2544, 123696, 7942080, 635633280, 61009159680, 6831940227840, 874493448514560, 125946241018214400, 20156433977646489600, 3548609812373223628800, 681555522002874494976000, 141810253720479017017344000
Offset: 0
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..300
Crossrefs
Programs
-
Maple
a := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi; seq(sum(a(k)*a(n-k), k=0..n),n=0..12);
-
Mathematica
a[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!] Table[Sum[a[k]a[n - k], {k, 0, n}], {n, 0, 20}]
-
Maxima
a(n) := if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!; makelist(sum(a(k)*a(n-k),k,0,n),n,0,12);
Formula
a(n) = sum(L(k)L(n-k),k=0..n), where L(n) is a central Lah number.
a(n) ~ n! * 16^n / (Pi*n). - Vaclav Kotesovec, Oct 06 2019