A187546 Stirling transform (of the first kind, with signs) of the central Lah numbers (A187535).
1, 2, 34, 1096, 51984, 3262488, 254943384, 23853046656, 2600024557248, 323588157732096, 45276442446814656, 7035574740347812800, 1202158966644148296000, 224022356544364922931840, 45215509996613004825121920
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Maple
lahc := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi; seq(add(combinat[stirling1](n,k)*lahc(k), k=0..n), n=0..20);
-
Mathematica
lahc[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!] Table[Sum[StirlingS1[n, k]*lahc[k], {k, 0, n}], {n, 0, 20}]
-
Maxima
lahc(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!; makelist(sum(stirling1(n,k)*lahc(k),k,0,n),n,0,12);
Formula
a(n) = sum((-1)^(n-k)*s(n,k)*L(k), k=0..n), where s(n,k) are the (signless) Stirling numbers of the first kind and L(n) are the central Lah numbers.
E.g.f.: 1/2 + 1/Pi*K(16*log(1+x)), where K(z) is the elliptic integral of the first kind (defined as in Mathematica).
a(n) ~ n! / (2*Pi*n * (exp(1/16) - 1)^n). - Vaclav Kotesovec, Apr 10 2018