A187555 Triangle read by rows, defined by T(n,k)=binomial(n,k)*|Stirling1(n,k)|, 0<=k<=n.
1, 0, 1, 0, 2, 1, 0, 6, 9, 1, 0, 24, 66, 24, 1, 0, 120, 500, 350, 50, 1, 0, 720, 4110, 4500, 1275, 90, 1, 0, 5040, 37044, 56840, 25725, 3675, 147, 1, 0, 40320, 365904, 735392, 473830, 109760, 9016, 224, 1, 0, 362880, 3945024, 9922416, 8477784, 2828574, 381024, 19656, 324, 1, 0, 3628800, 46195920, 140724000, 151972800, 67869900, 13287330, 1134000, 39150, 450, 1
Offset: 0
Examples
Triangle begins: 1 0,1 0,2,1 0,6,9,1 0,24,66,24,1 0,120,500,350,50,1 0,720,4110,4500,1275,90,1 0,5040,37044,56840,25725,3675,147,1 0,40320,365904,735392,473830,109760,9016,224,1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2020
Crossrefs
Row sum sequence is A211210.
Programs
-
Maple
seq(seq(binomial(n,k)*abs(combinat[stirling1](n,k)),k=0..n),n=0..8);
-
Mathematica
Flatten[Table[ Table[Binomial[n, k] Abs[StirlingS1[n, k]], {k, 0, n}], {n, 0, 10}], 1]
-
Maxima
create_list(binomial(n,k)*abs(stirling1(n,k)),n,0,10,k,0,n);
Formula
a(n,k) = binomial(n,k)*A132393(n,k).
Extensions
Edited by Olivier Gérard, Oct 23 2012