A187556 Triangle read by rows of products of (signless) Stirling numbers of the first kind (A132393) and Stirling numbers of the second kind (A008277).
1, 0, 1, 0, 1, 1, 0, 2, 9, 1, 0, 6, 77, 36, 1, 0, 24, 750, 875, 100, 1, 0, 120, 8494, 20250, 5525, 225, 1, 0, 720, 111132, 488824, 257250, 24500, 441, 1, 0, 5040, 1659636, 12685512, 11514069, 2058000, 85652, 784, 1, 0, 40320, 27943920, 357325100, 522796680, 156042999, 12002256, 252252, 1296, 1, 0, 362880, 524580336, 10941291000, 24681106400, 11453045625, 1444332771, 55566000, 652500, 2025, 1
Offset: 0
Examples
Triangle begins: 1 0,1 0,1,1 0,2,9,1 0,6,77,36,1 0,24,750,875,100,1 0,120,8494,20250,5525,225,1 0,720,111132,488824,257250,24500,441,1 0,5040,1659636,12685512,11514069,2058000,85652,784,1
Programs
-
Maple
seq(seq(abs(combinat[stirling1](n,k))*combinat[stirling2](n,k),k=0..n),n=0..8);
-
Mathematica
Flatten[Table[Table[Abs[StirlingS1[n, k]]*StirlingS2[n, k], {k, 0, n}],{n, 0, 8}] ,1]
-
Maxima
create_list(abs(stirling1(n,k)*stirling2(n,k)),n,0,10,k,0,n);
Formula
Formula: a(n,k) = s(n,k)*S(n,k), where the s(n,k) are the (signless) Stirling numbers of the first kind and the S(n,k) are the Stirling numbers of the second kind.