cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187556 Triangle read by rows of products of (signless) Stirling numbers of the first kind (A132393) and Stirling numbers of the second kind (A008277).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 9, 1, 0, 6, 77, 36, 1, 0, 24, 750, 875, 100, 1, 0, 120, 8494, 20250, 5525, 225, 1, 0, 720, 111132, 488824, 257250, 24500, 441, 1, 0, 5040, 1659636, 12685512, 11514069, 2058000, 85652, 784, 1, 0, 40320, 27943920, 357325100, 522796680, 156042999, 12002256, 252252, 1296, 1, 0, 362880, 524580336, 10941291000, 24681106400, 11453045625, 1444332771, 55566000, 652500, 2025, 1
Offset: 0

Views

Author

Emanuele Munarini, Mar 11 2011

Keywords

Examples

			Triangle begins:
1
0,1
0,1,1
0,2,9,1
0,6,77,36,1
0,24,750,875,100,1
0,120,8494,20250,5525,225,1
0,720,111132,488824,257250,24500,441,1
0,5040,1659636,12685512,11514069,2058000,85652,784,1
		

Crossrefs

Programs

  • Maple
    seq(seq(abs(combinat[stirling1](n,k))*combinat[stirling2](n,k),k=0..n),n=0..8);
  • Mathematica
    Flatten[Table[Table[Abs[StirlingS1[n, k]]*StirlingS2[n, k], {k, 0, n}],{n, 0, 8}] ,1]
  • Maxima
    create_list(abs(stirling1(n,k)*stirling2(n,k)),n,0,10,k,0,n);

Formula

Formula: a(n,k) = s(n,k)*S(n,k), where the s(n,k) are the (signless) Stirling numbers of the first kind and the S(n,k) are the Stirling numbers of the second kind.