A187574 Rank transform of the sequence floor(n*3^(1/3)); complement of A187575.
1, 3, 5, 6, 9, 10, 12, 14, 15, 17, 19, 21, 23, 25, 26, 28, 30, 31, 34, 35, 37, 39, 41, 42, 45, 46, 48, 50, 51, 54, 55, 57, 59, 61, 62, 64, 66, 67, 70, 71, 73, 75, 77, 79, 80, 82, 84, 86, 87, 90, 91, 93, 95, 96, 98, 100, 102, 104, 106, 107, 109, 111, 112, 115, 116, 118, 120, 122, 124, 125, 127, 129, 131, 132, 135, 136, 138, 140, 142, 143, 145, 147, 149, 151, 152, 154, 156, 158, 160
Offset: 1
Keywords
Programs
-
Mathematica
seqA = Table[Floor[n*3^(1/3)], {n, 1, 220}] (*A059539*) seqB = Table[n, {n, 1, 220}];(*A000027*) jointRank[{seqA_, seqB_}] := {Flatten@Position[#1, {_, 1}], Flatten@Position[#1, {_, 2}]} &[ Sort@Flatten[{{#1, 1} & /@ seqA, {#1, 2} & /@ seqB}, 1]]; limseqU = FixedPoint[jointRank[{seqA, #1[[1]]}] &, jointRank[{seqA, seqB}]][[1]] (*A187574*) Complement[Range[Length[seqA]], limseqU] (*A187575*) (* Peter J. C. Moses, Mar 11 2011 *)
Comments