cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187616 Triangle T(m,n) read by rows: number of domino tilings of the m X n grid (0 <= m <= n).

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 1, 0, 3, 0, 1, 1, 5, 11, 36, 1, 0, 8, 0, 95, 0, 1, 1, 13, 41, 281, 1183, 6728, 1, 0, 21, 0, 781, 0, 31529, 0, 1, 1, 34, 153, 2245, 14824, 167089, 1292697, 12988816, 1, 0, 55, 0, 6336, 0, 817991, 0, 108435745, 0, 1, 1, 89, 571, 18061, 185921, 4213133, 53175517, 1031151241, 14479521761, 258584046368
Offset: 0

Views

Author

N. J. A. Sloane, Mar 11 2011

Keywords

Comments

A099390 is the main entry for this problem.
Triangle read by rows: the square array in A187596 with entries above main diagonal deleted.

Examples

			Triangle begins:
1
1 0
1 1  2
1 0  3   0
1 1  5  11   36
1 0  8   0   95     0
1 1 13  41  281  1183   6728
1 0 21   0  781     0  31529       0
1 1 34 153 2245 14824 167089 1292697 12988816
...
		

Crossrefs

Cf. A099390, A187596. See A099390 for sequences appearing in the rows and columns. See also A187617, A187618.

Programs

  • Maple
    with(LinearAlgebra):
    T:= proc(m,n) option remember; local i, j, t, M;
          if m<=1 or n<=1 then 1 -irem(n*m, 2)
        elif irem(n*m, 2)=1 then 0
        else M:= Matrix(n*m, shape =skewsymmetric);
             for i to n do
               for j to m do
                 t:= (i-1)*m+j;
                 if jAlois P. Heinz, Apr 11 2011
  • Mathematica
    T[m_, n_] := T[m, n] = Module[{i, j, t, M}, Which[m <= 1 || n <= 1, 1 - Mod[n*m, 2], Mod[n*m, 2] == 1, 0, True, M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i-1)*m+j; If[j < m, M[t, t+1] = 1]; If[i < n, M[t, t+m] = 1 - 2*Mod[j, 2]]]]; Sqrt[Det[Table[M[i, j], {i, 1, n*m}, {j, 1, n*m}]]]]]; Table[Table[T[m, n], {n, 0, m}], {m, 0, 10}] // Flatten (* Jean-François Alcover, Jan 07 2014, translated from Maple *)