A187617 Array T(m,n) read by antidiagonals: number of domino tilings of the 2m X 2n grid (m>=0, n>=0).
1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 13, 36, 13, 1, 1, 34, 281, 281, 34, 1, 1, 89, 2245, 6728, 2245, 89, 1, 1, 233, 18061, 167089, 167089, 18061, 233, 1, 1, 610, 145601, 4213133, 12988816, 4213133, 145601, 610, 1
Offset: 0
Examples
The array begins: 1, 1, 1, 1, 1, 1, ... 1, 2, 5, 13, 34, 89, ... 1, 5, 36, 281, 2245, 18061, ... 1, 13, 281, 6728, 167089, 4213133, ... 1, 34, 2245, 167089, 12988816, 1031151241, ... 1, 89, 18061, 4213133, 1031151241, 258584046368, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..26, flattened
- N. Allegra, Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics, arXiv:1410.4131 [cond-mat.stat-mech], 2014. See Table 1.
- Laura Florescu, Daniela Morar, David Perkinson, Nicholas Salter and Tianyuan Xu, Sandpiles and Dominos, El. J. Comb., 22 (2015), P1.66. See Theorem 15.
- Index entries for sequences related to dominoes
Crossrefs
Programs
-
Maple
ft:=(m,n)-> 2^(m*n/2)*mul( mul( (cos(Pi*i/(n+1))^2+cos(Pi*j/(m+1))^2), j=1..m/2), i=1..n/2); T:=(m,n)->round(evalf(ft(m,n),300));
-
Mathematica
T[m_, n_] := Product[2(2 + Cos[(2j Pi)/(2m+1)] + Cos[(2k Pi)/(2n+1)]), {j, 1, m}, {k, 1, n}]; Table[T[m-n, n] // Round, {m, 0, 8}, {n, 0, m}] // Flatten (* Jean-François Alcover, Aug 05 2018 *)
-
PARI
default(realprecision, 120); {T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*cos(a*Pi/(2*n+1))^2+4*cos(b*Pi/(2*k+1))^2)))} \\ Seiichi Manyama, Jan 09 2021
Extensions
More terms from Nathaniel Johnston, Mar 22 2011
Comments