cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187617 Array T(m,n) read by antidiagonals: number of domino tilings of the 2m X 2n grid (m>=0, n>=0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 13, 36, 13, 1, 1, 34, 281, 281, 34, 1, 1, 89, 2245, 6728, 2245, 89, 1, 1, 233, 18061, 167089, 167089, 18061, 233, 1, 1, 610, 145601, 4213133, 12988816, 4213133, 145601, 610, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 11 2011

Keywords

Comments

A099390 is the main entry for this problem.
The even-indexed rows and columns of the square array in A187596.
Row (and column) 2 is given by A122367. - Nathaniel Johnston, Mar 22 2011

Examples

			The array begins:
  1,  1,     1,       1,          1,            1, ...
  1,  2,     5,      13,         34,           89, ...
  1,  5,    36,     281,       2245,        18061, ...
  1, 13,   281,    6728,     167089,      4213133, ...
  1, 34,  2245,  167089,   12988816,   1031151241, ...
  1, 89, 18061, 4213133, 1031151241, 258584046368, ...
		

Crossrefs

A187618 is the triangle version.
Main diagonal is A004003. Second and third rows give A001519, A188899.

Programs

  • Maple
    ft:=(m,n)->
    2^(m*n/2)*mul( mul(
    (cos(Pi*i/(n+1))^2+cos(Pi*j/(m+1))^2), j=1..m/2), i=1..n/2);
    T:=(m,n)->round(evalf(ft(m,n),300));
  • Mathematica
    T[m_, n_] := Product[2(2 + Cos[(2j Pi)/(2m+1)] + Cos[(2k Pi)/(2n+1)]), {j, 1, m}, {k, 1, n}];
    Table[T[m-n, n] // Round, {m, 0, 8}, {n, 0, m}] // Flatten (* Jean-François Alcover, Aug 05 2018 *)
  • PARI
    default(realprecision, 120);
    {T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*cos(a*Pi/(2*n+1))^2+4*cos(b*Pi/(2*k+1))^2)))} \\ Seiichi Manyama, Jan 09 2021

Extensions

More terms from Nathaniel Johnston, Mar 22 2011