A187651 Alternated binomial partial sums of the central Stirling numbers of the second kind.
1, 0, 6, 71, 1380, 34854, 1092317, 40900215, 1781924888, 88569337730, 4946558473226, 306691008191732, 20903038895529727, 1553426761730508586, 125016067017985968931, 10831572432055401760624, 1005245087722396707881648
Offset: 0
Crossrefs
Cf. A187653.
Programs
-
Maple
seq(add((-1)^(n-k)*binomial(n,k)*combinat[stirling2](2*k,k), k=0..n), n=0..20);
-
Mathematica
Table[Sum[(-1)^(n-k)Binomial[n, k] StirlingS2[2k, k], {k, 0, n}], {n, 0, 16}]
-
Maxima
makelist(sum((-1)^(n-k) *binomial(n,k) *stirling2(2*k,k), k,0,n), n,0,12);
Formula
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*S(2*k,k).
a(n) ~ c * d^n * (n-1)!, where d = 4/(w*(2-w)) = 6.176554609483480358231680164... and c = exp(w^2/4 - 1) / (Pi * sqrt(2*w * (1-w))) = 0.17569156962762991098958896633434384684339835018075095823375851..., where w = -LambertW(-2*exp(-2))^2 = -A226775. - Vaclav Kotesovec, Mar 30 2018, updated Jul 07 2021