A187652 Alternated binomial cumulative sums of the (signless) central Stirling numbers of the first kind (A187646).
1, 0, 10, 194, 5932, 237624, 11820780, 702992968, 48662470640, 3843811669088, 341207224961856, 33627579102171680, 3643463136559851440, 430456189350273371648, 55075003474909952394848, 7586546772496980353804704
Offset: 0
Crossrefs
Cf. A187646.
Programs
-
Maple
seq(sum((-1)^(n-k)*binomial(n,k)*abs(combinat[stirling1](2*k,k)),k=0..n),n=0..12);
-
Mathematica
Table[Sum[(-1)^(n - k)Binomial[n, k]Abs[StirlingS1[2k, k]], {k, 0, n}], {n, 0, 15}]
-
Maxima
makelist(sum((-1)^(n-k)*binomial(n,k)*abs(stirling1(2*k,k)),k,0,n),n,0,12);
Formula
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*abs(Stirling1(2*k,k)).
a(n) ~ c * d^n * (n-1)!, where d = 8*w^2/(2*w-1), where w = -LambertW(-1,-exp(-1/2)/2) = 1.7564312086261696769827376166... and c = exp((1-2*w)/(8*w^2)) / (2^(3/2)*Pi*sqrt(w-1)) = exp(-1/d) / (2^(3/2)*Pi*sqrt(w-1)) = 0.11686978539934159049334861225275481804523808136863346883911376048... - Vaclav Kotesovec, Jul 05 2021, updated May 25 2025