cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187655 Self-convolution of the central Stirling numbers of the second kind.

Original entry on oeis.org

1, 2, 15, 194, 3631, 89712, 2764268, 102207394, 4411265695, 217707856946, 12092696127691, 746552539553152, 50708165735187572, 3757864633323765824, 301719332111553586612, 26089939284112306045362, 2417245528055399202851119
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Comments

The sequence of the central Stirling numbers of the second kind is 1, 1, 7, 90, 1701,... with offset 0 (see A007820).

Crossrefs

Cf. A187656.

Programs

  • Maple
    seq( add(combinat[stirling2](2*k,k) *combinat[stirling2](2*(n-k),n-k) ,k=0..n), n=0..12);
  • Mathematica
    Table[Sum[StirlingS2[2k, k]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 16}]
  • Maxima
    makelist(sum(stirling2(2*k,k)*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);

Formula

a(n) = sum_{k=0..n} A048993(2k,k)*A048993(2n-2k,n-k).
a(n) ~ 2^(2*n+1/2) * n^(n-1/2) / (sqrt(Pi*(1-c)) * exp(n) * (c*(2-c))^n), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 20 2014