A187655 Self-convolution of the central Stirling numbers of the second kind.
1, 2, 15, 194, 3631, 89712, 2764268, 102207394, 4411265695, 217707856946, 12092696127691, 746552539553152, 50708165735187572, 3757864633323765824, 301719332111553586612, 26089939284112306045362, 2417245528055399202851119
Offset: 0
Crossrefs
Cf. A187656.
Programs
-
Maple
seq( add(combinat[stirling2](2*k,k) *combinat[stirling2](2*(n-k),n-k) ,k=0..n), n=0..12);
-
Mathematica
Table[Sum[StirlingS2[2k, k]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 16}]
-
Maxima
makelist(sum(stirling2(2*k,k)*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
Formula
a(n) ~ 2^(2*n+1/2) * n^(n-1/2) / (sqrt(Pi*(1-c)) * exp(n) * (c*(2-c))^n), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... . - Vaclav Kotesovec, May 20 2014
Comments