A187769 Triangle read by rows: equivalence classes of natural numbers, where numbers are equivalent when having equal numbers of zeros and ones in binary representation, respectively.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11, 13, 14, 15, 16, 17, 18, 20, 24, 19, 21, 22, 25, 26, 28, 23, 27, 29, 30, 31, 32, 33, 34, 36, 40, 48, 35, 37, 38, 41, 42, 44, 49, 50, 52, 56, 39, 43, 45, 46, 51, 53, 54, 57, 58, 60, 47, 55, 59, 61, 62, 63, 64, 65, 66
Offset: 0
Examples
See link.
Links
- Reinhard Zumkeller, Rows n = 0..78 of triangle, flattened - all terms < 2^12
- Reinhard Zumkeller, Illustration of initial terms
- Michael De Vlieger, Log log scatterplot of a(n), n = 0..2^21-1.
- Michael De Vlieger, Fan style binary tree of a(n), n = 0..8192, i.e., rows 0..12, with a color function associated with (a(n) mod 2) / 2^floor(log_2 n) that illustrates the relationship with Pascal's triangle.
- Index entries for sequences related to binary expansion of n
- Index entries for triangles and arrays related to Pascal's triangle
- Index entries for sequences that are permutations of the nonnegative integers
Crossrefs
Programs
-
Haskell
import List (elemIndices) a187769 n k = a187769_tabf !! n !! k a187769_row n = a187769_tabf !! n a187769_tabf = [0] : [elemIndices (b, len - b) $ takeWhile ((<= len) . uncurry (+)) $ zip a000120_list a023416_list | len <- [1 ..], b <- [1 .. len]] a187769_list = concat a187769_tabf
-
Mathematica
{{0}}~Join~Table[SortBy[Range[2^n, 2^(n + 1) - 1], DigitCount[#, 2, 1] &], {n, 0, 8}] // Flatten (* Michael De Vlieger, Jan 03 2025 *)
Comments