A187816 Triangle read by rows in which row n lists the first 2^(n-1) terms of A006519 in nonincreasing order, n >= 1.
1, 2, 1, 4, 2, 1, 1, 8, 4, 2, 2, 1, 1, 1, 1, 16, 8, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 32, 16, 8, 8, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 64, 32, 16, 16, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2
Offset: 1
Examples
For n = 5 the diagram of regions of the set of compositions of 5 has 2^(5-1) regions, see below: ------------------------------------------------------ . A006519 . as a tree . of number Diagram Region of parts of regions Composition ------------------------------------------------------ . _ _ _ _ _ 1 | 1 | |_| | | | | 1, 1, 1, 1, 1 2 | 2 | |_ _| | | | 2, 1, 1, 1 3 | 1 | |_| | | | 1, 2, 1, 1 4 | 4 | |_ _ _| | | 3, 1, 1 5 | 1 | |_| | | | 1, 1, 2, 1 6 | 2 | |_ _| | | 2, 2, 1 7 | 1 | |_| | | 1, 3, 1 8 | 8 | |_ _ _ _| | 4, 1 9 | 1 | |_| | | | 1, 1, 1, 2 10 | 2 | |_ _| | | 2, 1, 2 11 | 1 | |_| | | 1, 2, 2 12 | 4 | |_ _ _| | 3, 2 13 | 1 | |_| | | 1, 1, 3 14 | 2 | |_ _| | 2, 3 15 | 1 | |_| | 1, 4 16 | 16 | |_ _ _ _ _| 5 . The first largest region in the diagram is the 16th region which contains 16 parts, so T(5,1) = 16. The second largest region is the 8th region which contains 8 parts, so T(5,2) = 8. The third and the fourth largest regions are both the 4th region and the 12th region, each contains 4 parts, so T(5,3) = 4 and T(5,4) = 4. And so on. The sequence of the number of parts of the k-th largest region of the diagram is [16, 8, 4, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1], the same as the 5th row of triangle, as shown below. Triangle begins: 1; 2,1; 4,2,1,1; 8,4,2,2,1,1,1,1; 16,8,4,4,2,2,2,2,1,1,1,1,1,1,1,1; 32,16,8,8,4,4,4,4,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1; ...
Comments