cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187821 Number of non-squashing partitions of n into odd parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 9, 7, 9, 11, 12, 11, 12, 15, 17, 15, 17, 21, 22, 21, 22, 27, 29, 27, 29, 36, 36, 36, 36, 45, 47, 45, 47, 57, 58, 57, 58, 69, 73, 69, 73, 86, 88, 86, 88, 103, 109, 103, 109, 125, 130, 125, 130, 147, 157, 147, 157, 176, 184, 176, 184, 205, 220, 205, 220, 241, 256, 241, 256
Offset: 0

Views

Author

Joerg Arndt, Dec 27 2012

Keywords

Comments

A non-squashing partition of n is a partition p(1) + p(2) + ... + p(m) = n such that p(k) >= sum(j=k+1..m, p(j) ).

Examples

			The a(33) = a(35) = 27 non-squashing partitions of 33 and 35 into odd parts are
[ 1]   [ 17 9 5 1 1 ]       [ 1]   [ 19 9 5 1 1 ]
[ 2]   [ 17 9 7 ]           [ 2]   [ 19 9 7 ]
[ 3]   [ 17 11 3 1 1 ]      [ 3]   [ 19 11 3 1 1 ]
[ 4]   [ 17 11 5 ]          [ 4]   [ 19 11 5 ]
[ 5]   [ 17 13 3 ]          [ 5]   [ 19 13 3 ]
[ 6]   [ 17 15 1 ]          [ 6]   [ 19 15 1 ]
[ 7]   [ 19 7 5 1 1 ]       [ 7]   [ 21 7 5 1 1 ]
[ 8]   [ 19 7 7 ]           [ 8]   [ 21 7 7 ]
[ 9]   [ 19 9 3 1 1 ]       [ 9]   [ 21 9 3 1 1 ]
[10]   [ 19 9 5 ]           [10]   [ 21 9 5 ]
[11]   [ 19 11 3 ]          [11]   [ 21 11 3 ]
[12]   [ 19 13 1 ]          [12]   [ 21 13 1 ]
[13]   [ 21 7 3 1 1 ]       [13]   [ 23 7 3 1 1 ]
[14]   [ 21 7 5 ]           [14]   [ 23 7 5 ]
[15]   [ 21 9 3 ]           [15]   [ 23 9 3 ]
[16]   [ 21 11 1 ]          [16]   [ 23 11 1 ]
[17]   [ 23 5 3 1 1 ]       [17]   [ 25 5 3 1 1 ]
[18]   [ 23 5 5 ]           [18]   [ 25 5 5 ]
[19]   [ 23 7 3 ]           [19]   [ 25 7 3 ]
[20]   [ 23 9 1 ]           [20]   [ 25 9 1 ]
[21]   [ 25 5 3 ]           [21]   [ 27 5 3 ]
[22]   [ 25 7 1 ]           [22]   [ 27 7 1 ]
[23]   [ 27 3 3 ]           [23]   [ 29 3 3 ]
[24]   [ 27 5 1 ]           [24]   [ 29 5 1 ]
[25]   [ 29 3 1 ]           [25]   [ 31 3 1 ]
[26]   [ 31 1 1 ]           [26]   [ 33 1 1 ]
[27]   [ 33 ]               [27]   [ 35 ]
		

Crossrefs

Cf. A018819 and A000123 (non-squashing partitions, also binary partitions).
Cf. A088567 (non-squashing partitions into distinct parts)