A193934 Triangle read by rows: row n gives the n primes corresponding to A187822.
3, 3, 7, 3, 7, 31, 3, 7, 31, 127, 3, 7, 19, 29, 43, 3, 7, 41, 61, 83, 167, 3, 7, 19, 29, 43, 151, 271, 3, 11, 17, 53, 163, 409, 1109, 1439, 3, 61, 79, 103, 283, 1171, 1459, 3187, 4339, 3, 7, 19, 29, 43, 163, 233, 307, 1039, 1409, 3, 29, 59, 71, 233, 269, 353
Offset: 1
Examples
Triangle begins: n = 1 and k = 2 -> [3] n = 2 and k = 4 -> [3, 7] n = 3 and k = 16 -> [3, 7, 31] n = 4 and k = 64 -> [3, 7, 31, 127] n = 5 and k = 140 -> [3, 7, 19, 29, 43] n = 6 and k = 440 -> [3, 7, 41, 61, 83, 167] … The sequence A187822 gives the values k.
Crossrefs
Cf. A187822.
Programs
-
Maple
with(numtheory):for n from 0 to 30 do:ii:=0:for k from 1 to 4000000 while(ii=0) do:s:=0:x:=divisors(k):n1:=nops(x):it:=0:lst:={}:for a from 1 to n1 do:s:=s+x[a]:if type(s,prime)=true then it:=it+1:lst:=lst union {s}:else fi:od: if it = n then ii:=1: print(lst) :else fi:od:od:
-
Mathematica
lst={2};Do[ lst=Union[lst ,{Prime[i]}],{i,1,5000}];a[n_]:=Catch[For[k=1,True,k++,cnt=Count[Accumulate[Divisors[k]],_?PrimeQ];If[cnt==n,Print[Intersection[Accumulate[Divisors[k]],lst]];Throw[k]]]];Table[a[n],{n,0,15}]
Comments