cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A247978 Number of permutations of [n] that have no prime fixed points.

Original entry on oeis.org

1, 1, 1, 3, 14, 64, 426, 2790, 24024, 229080, 2399760, 25022880, 312273360, 3884393520, 56255149440, 869007242880, 14266826784000, 233845982899200, 4309095479673600, 79300508301907200, 1620482929875532800, 34699018357638835200, 777011144137311283200
Offset: 0

Views

Author

Alois P. Heinz, Nov 02 2014

Keywords

Examples

			a(2) = 1: 21.
a(3) = 3: 132, 231, 312.
a(4) = 14: 1324, 1342, 1423, 2143, 2314, 2341, 2413, 3124, 3142, 3412, 3421, 4123, 4312, 4321.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add((-1)^(j)*binomial(pi(n), j)*(n-j)!, j=0..pi(n)):
    seq(a(n), n=0..25);
  • Mathematica
    a[n_] := Sum[(-1)^j*Binomial[PrimePi[n], j]*(n-j)!, {j, 0, PrimePi[n]}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 26 2017, translated from Maple *)
  • PARI
    for(n=0, 25, print1(sum(j=0, primepi(n), (-1)^j*binomial(primepi(n), j)*(n - j)!), ", ")) \\ Indranil Ghosh, Mar 08 2017

Formula

a(n) = Sum_{j=0..pi(n)} (-1)^(j)*C(pi(n),j)*(n-j)!, with pi = A000720.
Showing 1-1 of 1 results.