A187889 Riordan matrix (1/(1-x-x^2-x^3),(x+x^2+x^3)/(1-x-x^2-x^3)).
1, 1, 1, 2, 3, 1, 4, 8, 5, 1, 7, 19, 18, 7, 1, 13, 43, 54, 32, 9, 1, 24, 94, 147, 117, 50, 11, 1, 44, 200, 375, 375, 216, 72, 13, 1, 81, 418, 913, 1100, 799, 359, 98, 15, 1, 149, 861, 2147, 3027, 2657, 1507, 554, 128, 17, 1, 274, 1753, 4914, 7937, 8174, 5610, 2603, 809, 162, 19, 1
Offset: 0
Examples
Triangle begins: 1 1,1 2,3,1 4,8,5,1 7,19,18,7,1 13,43,54,32,9,1 24,94,147,117,50,11,1 44,200,375,375,216,72,13,1 81,418,913,1100,799,359,98,15,1
Programs
-
Mathematica
(* Function RiordanSquare defined in A321620. *) RiordanSquare[1/(1 - x - x^2- x^3), 11] // Flatten (* Peter Luschny, Nov 27 2018 *)
-
Maxima
trinomial(n,k):=coeff(expand((1+x+x^2)^n),x,k); create_list(sum(binomial(i+k,k)*trinomial(i+k,n-k-i),i,0,n-k),n,0,8,k,0,n);
Formula
a(n,k) = Sum_{i=0..n-k} binomial(i+k,k)*trinomial(i+k,n-k-i), where trinomial(n,k) are the trinomial coefficients (A027907).
Recurrence: a(n+3,k+1) = a(n+2,k+1) + a(n+2,k) + a(n+1,k+1) + a(n+1,k) + a(n,k+1) + a(n,k)