cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187914 Generalized Riordan array based on the binomial transform of the Fine's numbers A000957.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 10, 4, 1, 21, 36, 15, 6, 1, 79, 137, 58, 29, 7, 1, 311, 543, 232, 132, 37, 9, 1, 1265, 2219, 954, 590, 179, 57, 10, 1, 5275, 9285, 4010, 2628, 837, 315, 68, 12, 1, 22431, 39587, 17156, 11732, 3861, 1629, 396, 94, 13, 1, 96900, 171369, 74469, 52608, 17726, 8127, 2133, 612, 108, 15, 1
Offset: 0

Views

Author

Paul Barry, Mar 15 2011

Keywords

Comments

Row sums are A033321(n+1). Second column is A002212(n+1). Equal to A007318*A187913.

Examples

			Triangle begins
1,
1, 1,
2, 3, 1,
6, 10, 4, 1,
21, 36, 15, 6, 1,
79, 137, 58, 29, 7, 1,
311, 543, 232, 132, 37, 9, 1,
1265, 2219, 954, 590, 179, 57, 10, 1,
5275, 9285, 4010, 2628, 837, 315, 68, 12, 1,
22431, 39587, 17156, 11732, 3861, 1629, 396, 94, 13, 1
Production matrix is
1, 1,
1, 2, 1,
1, 2, 1, 1,
1, 2, 1, 2, 1,
1, 2, 1, 2, 1, 1,
1, 2, 1, 2, 1, 2, 1,
1, 2, 1, 2, 1, 2, 1, 1,
1, 2, 1, 2, 1, 2, 1, 2, 1,
1, 2, 1, 2, 1, 2, 1, 2, 1, 1;
Hence, for instance, we have
79=1*0+1.21+1.36+1.15+1.6+1.1;
137=1.21+2.36+2.15+2.6+2.1;
58=1.36+1.15+1.6+1.1
		

Formula

Let g(x)=(1+x-sqrt(1-6x+5x^2))/(2x(2-x)) be the g.f. of A033321, the binomial transform of the Fine numbers.
Then the g.f. of the k-th column is x^k*g(x)^((k+2)/2)/(1-2*x*g(x))^(k/2) if k is even, and
x^k*g(x)^((k+1)/2)/(1-2*x*g(x))^((k+1)/2) if k is odd. Otherwise put, column k has g.f.
g.f. x^k*g(x)^(k+1)/(1-xg(x)-x^2g(x)^2)^floor((k+1)/2).