A187914 Generalized Riordan array based on the binomial transform of the Fine's numbers A000957.
1, 1, 1, 2, 3, 1, 6, 10, 4, 1, 21, 36, 15, 6, 1, 79, 137, 58, 29, 7, 1, 311, 543, 232, 132, 37, 9, 1, 1265, 2219, 954, 590, 179, 57, 10, 1, 5275, 9285, 4010, 2628, 837, 315, 68, 12, 1, 22431, 39587, 17156, 11732, 3861, 1629, 396, 94, 13, 1, 96900, 171369, 74469, 52608, 17726, 8127, 2133, 612, 108, 15, 1
Offset: 0
Examples
Triangle begins 1, 1, 1, 2, 3, 1, 6, 10, 4, 1, 21, 36, 15, 6, 1, 79, 137, 58, 29, 7, 1, 311, 543, 232, 132, 37, 9, 1, 1265, 2219, 954, 590, 179, 57, 10, 1, 5275, 9285, 4010, 2628, 837, 315, 68, 12, 1, 22431, 39587, 17156, 11732, 3861, 1629, 396, 94, 13, 1 Production matrix is 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1; Hence, for instance, we have 79=1*0+1.21+1.36+1.15+1.6+1.1; 137=1.21+2.36+2.15+2.6+2.1; 58=1.36+1.15+1.6+1.1
Formula
Let g(x)=(1+x-sqrt(1-6x+5x^2))/(2x(2-x)) be the g.f. of A033321, the binomial transform of the Fine numbers.
Then the g.f. of the k-th column is x^k*g(x)^((k+2)/2)/(1-2*x*g(x))^(k/2) if k is even, and
x^k*g(x)^((k+1)/2)/(1-2*x*g(x))^((k+1)/2) if k is odd. Otherwise put, column k has g.f.
g.f. x^k*g(x)^(k+1)/(1-xg(x)-x^2g(x)^2)^floor((k+1)/2).
Comments