cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187926 Riordan matrix (1/(1-4x),(1-sqrt(1-4x))/2).

Original entry on oeis.org

1, 4, 1, 16, 5, 1, 64, 22, 6, 1, 256, 93, 29, 7, 1, 1024, 386, 130, 37, 8, 1, 4096, 1586, 562, 176, 46, 9, 1, 16384, 6476, 2380, 794, 232, 56, 10, 1, 65536, 26333, 9949, 3473, 1093, 299, 67, 11, 1, 262144, 106762, 41226, 14893, 4944, 1471, 378, 79, 12, 1, 1048576, 431910, 169766, 63004, 21778, 6885, 1941, 470, 92, 13, 1
Offset: 0

Views

Author

Emanuele Munarini, Mar 16 2011

Keywords

Comments

Row sums are A000346.

Examples

			Triangle begins:
1,
4,1,
16,5,1,
64,22,6,1,
256,93,29,7,1,
1024,386,130,37,8,1,
4096,1586,562,176,46,9,1,
16384,6476,2380,794,232,56,10,1,
65536,26333,9949,3473,1093,299,67,11,1
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n + i, n]2^(n - k - i), {i, 0, n - k}], {n, 0, 8}, {k, 0, 8}]//MatrixForm
  • Maxima
    create_list(sum(binomial(n+i,n)*2^(n-k-i),i,0,n-k),n,0,10,k,0,n);

Formula

a(n,k) = sum(binomial(n+i,n)*2^(n-k-i),i=0..n-k)
Recurrence: a(n+1,k+1) = a(n,k) + a(n,k+1) + a(n,k+2) + ... + a(n,n).