cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A187989 Number of nondecreasing arrangements of 5 numbers x(i) in -(n+3)..(n+3) with the sum of sign(x(i))*2^|x(i)| zero.

Original entry on oeis.org

36, 57, 82, 111, 144, 181, 222, 267, 316, 369, 426, 487, 552, 621, 694, 771, 852, 937, 1026, 1119, 1216, 1317, 1422, 1531, 1644, 1761, 1882, 2007, 2136, 2269, 2406, 2547, 2692, 2841, 2994, 3151, 3312, 3477, 3646, 3819, 3996, 4177, 4362, 4551, 4744, 4941
Offset: 1

Views

Author

R. H. Hardin, Mar 18 2011

Keywords

Examples

			Some solutions for n=3:
  -6  -4  -4  -6  -4  -3  -4  -3  -6  -3  -3  -6  -4  -5  -5  -1
  -1  -4  -4  -3  -1  -2  -3   0  -5  -3  -3  -1   1  -4  -2  -1
  -1  -4  -3   3   1  -2  -3   0   5  -2  -3   1   1   3  -2  -1
   2  -4   3   5   3   3   4   1   5   2  -3   5   2   3   3   1
   6   6   5   5   3   3   4   2   5   4   5   5   3   5   5   2
		

Crossrefs

Row 5 of A187988.

Programs

  • Mathematica
    AatE[n_, nminusfE_, E_] := AatE[n, nminusfE, E] = Module[{a, fEminus, fEplus, f0, resn}, If[E == 0, If[n == 0, 1, 0], a = 0; For[fEminus = 0, fEminus <= nminusfE, fEminus++, For[fEplus = 0, fEplus <= nminusfE - fEminus, fEplus++, f0 = nminusfE - fEminus - fEplus; resn = n - (2^E + 1)*fEminus + (2^E - 1)*fEplus; If[Abs[resn] <= (1 + 2^(E - 1))*f0, a = a + AatE[resn, f0, E - 1]]]]; a]];
    T[n_, k_] := AatE[n, n, n + k - 2];
    Table[T[5, k], {k, 1, 86}] (* Jean-François Alcover, Sep 18 2024, after R. J. Mathar in A187988 *)

Extensions

a(28) corrected by R. J. Mathar, May 09 2023