A188012 Positions of 0 in A188011; complement of A188013.
3, 8, 16, 21, 29, 37, 42, 50, 55, 63, 71, 76, 84, 92, 97, 105, 110, 118, 126, 131, 139, 144, 152, 160, 165, 173, 181, 186, 194, 199, 207, 215, 220, 228, 236, 241, 249, 254, 262, 270, 275, 283, 288, 296, 304, 309, 317, 325, 330, 338, 343, 351, 359, 364, 372, 377, 385, 393, 398, 406, 414, 419, 427, 432, 440
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Programs
-
Magma
[3*Floor((n-1)*(1+Sqrt(5))/2)+2*n+1: n in [1..65]]; // G. C. Greubel, Nov 22 2018
-
Mathematica
r=(1+5^(1/2))/2; k=3; t=Table[Floor[n*r]-Floor[(n-k)*r]-Floor[k*r],{n,1,220}] (* A188011 *) Flatten[Position[t,0]] (* A188012 *) Flatten[Position[t,1]] (* A188013 *) Table[3*Floor[(n-1)*GoldenRatio] + 2*n + 1, {n, 1, 65}] (* G. C. Greubel, Nov 22 2018 *)
-
PARI
vector(65, n, 3*floor((n-1)*(1+sqrt(5))/2)+2*n+1) \\ G. C. Greubel, Nov 22 2018
-
Sage
[3*floor((n-1)*(1+sqrt(5))/2)+2*n+1 for n in (1..65)] # G. C. Greubel, Nov 22 2018
Formula
a(n+1) = 3*floor(n*phi)+2*n+3 for n>=0, where phi = (1+sqrt(5))/2 (see A188011). - Michel Dekking, Sep 28 2017
Comments