cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188012 Positions of 0 in A188011; complement of A188013.

Original entry on oeis.org

3, 8, 16, 21, 29, 37, 42, 50, 55, 63, 71, 76, 84, 92, 97, 105, 110, 118, 126, 131, 139, 144, 152, 160, 165, 173, 181, 186, 194, 199, 207, 215, 220, 228, 236, 241, 249, 254, 262, 270, 275, 283, 288, 296, 304, 309, 317, 325, 330, 338, 343, 351, 359, 364, 372, 377, 385, 393, 398, 406, 414, 419, 427, 432, 440
Offset: 1

Views

Author

Clark Kimberling, Mar 19 2011

Keywords

Comments

See A188014 and A188011.

Crossrefs

Programs

  • Magma
    [3*Floor((n-1)*(1+Sqrt(5))/2)+2*n+1: n in [1..65]]; // G. C. Greubel, Nov 22 2018
    
  • Mathematica
    r=(1+5^(1/2))/2; k=3;
    t=Table[Floor[n*r]-Floor[(n-k)*r]-Floor[k*r],{n,1,220}]   (* A188011 *)
    Flatten[Position[t,0]]  (* A188012 *)
    Flatten[Position[t,1]]  (* A188013 *)
    Table[3*Floor[(n-1)*GoldenRatio] + 2*n + 1, {n, 1, 65}] (* G. C. Greubel, Nov 22 2018 *)
  • PARI
    vector(65, n, 3*floor((n-1)*(1+sqrt(5))/2)+2*n+1) \\ G. C. Greubel, Nov 22 2018
    
  • Sage
    [3*floor((n-1)*(1+sqrt(5))/2)+2*n+1 for n in (1..65)] # G. C. Greubel, Nov 22 2018

Formula

a(n+1) = 3*floor(n*phi)+2*n+3 for n>=0, where phi = (1+sqrt(5))/2 (see A188011). - Michel Dekking, Sep 28 2017