A188066 Triangle read by rows: Bell polynomial of the second kind B(n,k) with argument vector (7, 42, 210, 840, 2520, 5040, 5040).
7, 42, 49, 210, 882, 343, 840, 11172, 12348, 2401, 2520, 117600, 288120, 144060, 16807, 5040, 1076040, 5433120, 5330220, 1512630, 117649, 5040, 8643600, 89029080, 155296680, 81177810, 14823774, 823543, 0, 60540480, 1306912320, 3884433840, 3360055440, 1087076760, 138355224, 5764801
Offset: 1
Examples
Triangle begins 7; 42, 49; 210, 882, 343; 840, 11172, 12348, 2401; 2520, 117600, 288120, 144060, 16807; 5040, 1076040, 5433120, 5330220, 1512630, 117649; ...
Links
- M. Abbas and S. Bouroubi, On new identities for Bell's polynomials, Disc. Math. 293 (1-3) (2005), 5-10.
- Vladimir Kruchinin, Derivation of Bell Polynomials of the Second Kind, arXiv:1104.5065 [math.CO], 2011.
- John Riordan, Derivatives of composite functions, Bull. Am. Math. Soc. 52 (1946), 664-667.
- Eric Weisstein's World of Mathematics, Bell Polynomial.
Programs
-
Maple
A188066 := proc(n,k) n!/k!*add( binomial(k,j)*binomial(7*j,n)*(-1)^(k-j),j=0..k) ; end proc: seq(seq(A188066(n,k),k=1..n),n=1..5) ; # R. J. Mathar, Apr 08 2011 # The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> `if`(n<7,[7,42,210,840,2520,5040,5040][n+1],0), 9); # Peter Luschny, Jan 29 2016
-
Mathematica
b[n_, k_] := n!/k!*Sum[ Binomial[k, j]*Binomial[7*j, n]*(-1)^(k - j), {j, 0, k}]; Table[b[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 21 2013, translated from Maxima *) BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; rows = 12; B = BellMatrix[Function[n, If[n<7, {7, 42, 210, 840, 2520, 5040, 5040}[[n + 1]], 0]], rows]; Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
-
Maxima
B(n,k):=n!/k!*x^(7*k-n)*sum(binomial(k,j)*binomial(7*j,n)*(-1)^(k-j),j,0,k);
Formula
B(n,k) = (n!/k!)*Sum_{j=0..k} binomial(k,j)*binomial(7*j,n)*(-1)^(k-j).
Comments