cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188064 Partial sums of wt(n)! where wt(n) is the Hamming weight of n (A000120).

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 10, 16, 17, 19, 21, 27, 29, 35, 41, 65, 66, 68, 70, 76, 78, 84, 90, 114, 116, 122, 128, 152, 158, 182, 206, 326, 327, 329, 331, 337, 339, 345, 351, 375, 377, 383, 389, 413, 419, 443, 467, 587, 589, 595, 601, 625, 631, 655, 679, 799, 805, 829, 853, 973, 997, 1117
Offset: 0

Views

Author

Joerg Arndt, Mar 20 2011

Keywords

Comments

Partial sums of A093659, partial sums of the factorials of A000120.
A000522 is a subsequence: A000522(n)=a(2^n-1).

Crossrefs

Programs

  • Mathematica
    FoldList[Plus, 0!, Table[(Plus @@ IntegerDigits[n, 2])!, {n, 1, 70}]] (* From Olivier Gérard, Mar 23 2011 *)
    Accumulate[DigitCount[Range[0,70],2,1]!] (* Harvey P. Dale, Jun 26 2013 *)
  • PARI
    bitcount(x)=
    { /* Return Hamming weight of x */
        local(p);  p = 0;
        while ( x, p+=bitand(x, 1); x>>=1; );
        return( p );
    }
    N=65; /* that many terms */
    f=vector(N,n,bitcount(n-1)!); /* factorials of Hamming weights */
    s=vector(N); s[1]=f[1]; /* for cumulative sums */
    for (n=2,N,s[n]=s[n-1]+f[n]); /* sum up */
    s /* show terms */ /* Joerg Arndt, Mar 20 2011 */

Formula

a(n)=sum(k=0,n,wt(k)!) where wt(k) is the Hamming weight of k.