A188064 Partial sums of wt(n)! where wt(n) is the Hamming weight of n (A000120).
1, 2, 3, 5, 6, 8, 10, 16, 17, 19, 21, 27, 29, 35, 41, 65, 66, 68, 70, 76, 78, 84, 90, 114, 116, 122, 128, 152, 158, 182, 206, 326, 327, 329, 331, 337, 339, 345, 351, 375, 377, 383, 389, 413, 419, 443, 467, 587, 589, 595, 601, 625, 631, 655, 679, 799, 805, 829, 853, 973, 997, 1117
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
FoldList[Plus, 0!, Table[(Plus @@ IntegerDigits[n, 2])!, {n, 1, 70}]] (* From Olivier Gérard, Mar 23 2011 *) Accumulate[DigitCount[Range[0,70],2,1]!] (* Harvey P. Dale, Jun 26 2013 *)
-
PARI
bitcount(x)= { /* Return Hamming weight of x */ local(p); p = 0; while ( x, p+=bitand(x, 1); x>>=1; ); return( p ); } N=65; /* that many terms */ f=vector(N,n,bitcount(n-1)!); /* factorials of Hamming weights */ s=vector(N); s[1]=f[1]; /* for cumulative sums */ for (n=2,N,s[n]=s[n-1]+f[n]); /* sum up */ s /* show terms */ /* Joerg Arndt, Mar 20 2011 */
Formula
a(n)=sum(k=0,n,wt(k)!) where wt(k) is the Hamming weight of k.
Comments