cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188066 Triangle read by rows: Bell polynomial of the second kind B(n,k) with argument vector (7, 42, 210, 840, 2520, 5040, 5040).

Original entry on oeis.org

7, 42, 49, 210, 882, 343, 840, 11172, 12348, 2401, 2520, 117600, 288120, 144060, 16807, 5040, 1076040, 5433120, 5330220, 1512630, 117649, 5040, 8643600, 89029080, 155296680, 81177810, 14823774, 823543, 0, 60540480, 1306912320, 3884433840, 3360055440, 1087076760, 138355224, 5764801
Offset: 1

Views

Author

Vladimir Kruchinin, Mar 24 2011

Keywords

Comments

From the explicit write-up of the Bell polynomials we have B(n,k)(7*x^6, 42*x^5, 210*x^4, 840*x^3, 2520*x^2, 5040*x, 5040) = B(n,k)(7, 42, ..., 5040)*x^(7*k-n) for a more general set of arguments.

Examples

			Triangle begins
     7;
    42,      49;
   210,     882,     343;
   840,   11172,   12348,    2401;
  2520,  117600,  288120,  144060,   16807;
  5040, 1076040, 5433120, 5330220, 1512630, 117649;
  ...
		

Crossrefs

Cf. A188062, A068424 (row 7).

Programs

  • Maple
    A188066 := proc(n,k) n!/k!*add( binomial(k,j)*binomial(7*j,n)*(-1)^(k-j),j=0..k) ; end proc:
    seq(seq(A188066(n,k),k=1..n),n=1..5) ; # R. J. Mathar, Apr 08 2011
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n<7,[7,42,210,840,2520,5040,5040][n+1],0), 9); # Peter Luschny, Jan 29 2016
  • Mathematica
    b[n_, k_] := n!/k!*Sum[ Binomial[k, j]*Binomial[7*j, n]*(-1)^(k - j), {j, 0, k}]; Table[b[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 21 2013, translated from Maxima *)
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    B = BellMatrix[Function[n, If[n<7, {7, 42, 210, 840, 2520, 5040, 5040}[[n + 1]], 0]], rows];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
  • Maxima
    B(n,k):=n!/k!*x^(7*k-n)*sum(binomial(k,j)*binomial(7*j,n)*(-1)^(k-j),j,0,k);

Formula

B(n,k) = (n!/k!)*Sum_{j=0..k} binomial(k,j)*binomial(7*j,n)*(-1)^(k-j).