A188124 Number of strictly increasing arrangements of 5 nonzero numbers in -(n+3)..(n+3) with sum zero.
0, 4, 16, 42, 90, 172, 296, 482, 740, 1092, 1554, 2154, 2906, 3846, 4992, 6382, 8038, 10004, 12302, 14984, 18074, 21626, 25670, 30266, 35442, 41266, 47770, 55024, 63064, 71966, 81766, 92548, 104350, 117258, 131316, 146616, 163200, 181168, 200566
Offset: 0
Keywords
Examples
4*x + 16*x^2 + 42*x^3 + 90*x^4 + 172*x^5 + 296*x^6 + 482*x^7 + 740*x^8 + ... Some solutions for n=6 .-7...-7...-6...-7...-8...-8...-4...-9...-7...-5...-6...-4...-6...-9...-7...-5 .-5...-5...-4...-6...-6...-2...-3...-5...-5...-4...-3...-3...-3...-5...-4...-3 ..1....2....2....2....1...-1...-2....1...-4...-2...-2...-2....1....2...-2....1 ..5....3....3....5....4....4....4....5....7....4....4....1....2....5....6....3 ..6....7....5....6....9....7....5....8....9....7....7....8....6....7....7....4
Links
- R. H. Hardin, Table of n, a(n) for n = 0..200 (corrected by _R. H. Hardin_, Jan 19 2019)
Programs
-
PARI
{a(n) = local(v, c, m); m = n+3; forvec( v = vector( 5, i, [-m, m]), if( 0==prod( k=1, 5, v[k]), next); if( 0==sum( k=1, 5, v[k]), c++), 2); c} /* Michael Somos, Apr 11 2011 */
Formula
Empirical: a(n)=2*a(n-1)-a(n-3)-2*a(n-5)+2*a(n-6)+a(n-8)-2*a(n-10)+a(n-11) = 269/1728 +235*n^2/144 +161*n/96 +23*n^4/288 +83*n^3/144 +(-1)^n*(1/64-3*n/32) -2*(-1)^n*A130815(n+2)/27 +A057077(n+1)/8.
Empirical: G.f. -2*x*(2+4*x+5*x^2+5*x^3+4*x^4+x^5+2*x^6) / ( (x^2+1)*(1+x+x^2)*(1+x)^2*(x-1)^5 ). - R. J. Mathar, Mar 21 2011
Comments