A188125 Number of strictly increasing arrangements of 6 nonzero numbers in -(n+4)..(n+4) with sum zero.
4, 16, 52, 137, 308, 624, 1154, 1999, 3278, 5144, 7772, 11387, 16230, 22602, 30830, 41303, 54440, 70734, 90706, 114963, 144146, 178984, 220244, 268797, 325548, 391514, 467756, 555449, 655816, 770208, 900020, 1046787, 1212094, 1397668
Offset: 0
Keywords
Examples
4 + 16*x + 52*x^2 + 137*x^3 + 308*x^4 + 624*x^5 + 1154*x^6 + 1999*x^7 + 3278*x^8 + ... Some solutions for n=6 -10...-8...-7...-8...-8...-9...-9...-9...-9...-7..-10...-9...-7..-10...-9...-9 .-8...-6...-5...-5...-6...-3...-7...-3...-2...-5...-6...-5...-5...-6...-4...-5 .-1....1...-1...-1...-1...-2...-2....1...-1...-2...-2...-1...-1...-2...-2...-4 ..4....3....1....1....2....3....3....2....1....1....2....1....3....3....1....3 ..7....4....2....3....5....4....5....4....2....4....6....6....4....5....5....6 ..8....6...10...10....8....7...10....5....9....9...10....8....6...10....9....9
Links
- R. H. Hardin, Table of n, a(n) for n = 0..200 (a(0) inserted by _Georg Fischer_, Jan 24 2019)
Crossrefs
Cf. A188122
Programs
-
PARI
{a(n) = local(v, c, m); m = n+4; forvec( v = vector( 6, i, [-m, m]), if( 0==prod( k=1, 6, v[k]), next); if( 0==sum( k=1, 6, v[k]), c++), 2); c} /* Michael Somos, Apr 11 2011 */
Formula
Empirical: a(n)=2*a(n-1)-a(n-3)-a(n-5)+2*a(n-8)-a(n-11)-a(n-13)+2*a(n-15)-a(n-16)
= 168587/43200 +187*n/32 +3593*n^3/2160 +619*n^2/144 +457*n^4/1440 +11*n^5/450 -(-1)^n/64-3*n*(-1)^n/32 +4*(-1)^n*A119910(n+1)/27 -2*A117444(n+2)/25 +A057077(n)/8.
Empirical: G.f. -x*(-16 -20*x -33*x^2 -50*x^3 -60*x^4 -59*x^5 -51*x^6 -41*x^7 -18*x^8 -3*x^9 -x^10 +x^11 +4*x^12 -2*x^13 -7*x^14 +4*x^15) / ( (1+x+x^2) *(x^4+x^3+x^2+x+1) *(x^2+1) *(1+x)^2 *(x-1)^6 ). - R. J. Mathar, Mar 21 2011
Comments