cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188125 Number of strictly increasing arrangements of 6 nonzero numbers in -(n+4)..(n+4) with sum zero.

Original entry on oeis.org

4, 16, 52, 137, 308, 624, 1154, 1999, 3278, 5144, 7772, 11387, 16230, 22602, 30830, 41303, 54440, 70734, 90706, 114963, 144146, 178984, 220244, 268797, 325548, 391514, 467756, 555449, 655816, 770208, 900020, 1046787, 1212094, 1397668
Offset: 0

Views

Author

R. H. Hardin, Mar 21 2011

Keywords

Comments

Row 6 of A188122.

Examples

			4 + 16*x + 52*x^2 + 137*x^3 + 308*x^4 + 624*x^5 + 1154*x^6 + 1999*x^7 + 3278*x^8 + ...
Some solutions for n=6
-10...-8...-7...-8...-8...-9...-9...-9...-9...-7..-10...-9...-7..-10...-9...-9
.-8...-6...-5...-5...-6...-3...-7...-3...-2...-5...-6...-5...-5...-6...-4...-5
.-1....1...-1...-1...-1...-2...-2....1...-1...-2...-2...-1...-1...-2...-2...-4
..4....3....1....1....2....3....3....2....1....1....2....1....3....3....1....3
..7....4....2....3....5....4....5....4....2....4....6....6....4....5....5....6
..8....6...10...10....8....7...10....5....9....9...10....8....6...10....9....9
		

Crossrefs

Programs

  • PARI
    {a(n) = local(v, c, m); m = n+4; forvec( v = vector( 6, i, [-m, m]), if( 0==prod( k=1, 6, v[k]), next); if( 0==sum( k=1, 6, v[k]), c++), 2); c} /* Michael Somos, Apr 11 2011 */

Formula

Empirical: a(n)=2*a(n-1)-a(n-3)-a(n-5)+2*a(n-8)-a(n-11)-a(n-13)+2*a(n-15)-a(n-16)
= 168587/43200 +187*n/32 +3593*n^3/2160 +619*n^2/144 +457*n^4/1440 +11*n^5/450 -(-1)^n/64-3*n*(-1)^n/32 +4*(-1)^n*A119910(n+1)/27 -2*A117444(n+2)/25 +A057077(n)/8.
Empirical: G.f. -x*(-16 -20*x -33*x^2 -50*x^3 -60*x^4 -59*x^5 -51*x^6 -41*x^7 -18*x^8 -3*x^9 -x^10 +x^11 +4*x^12 -2*x^13 -7*x^14 +4*x^15) / ( (1+x+x^2) *(x^4+x^3+x^2+x+1) *(x^2+1) *(1+x)^2 *(x-1)^6 ). - R. J. Mathar, Mar 21 2011