cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188128 Expansion of (4-6*x-6*x^2+x^3)/((1+x)*(1-3*x+x^3)).

Original entry on oeis.org

4, 2, 10, 23, 70, 197, 571, 1640, 4726, 13604, 39175, 112796, 324787, 935183, 2692756, 7753478, 22325254, 64283003, 185095534, 532961345, 1534601035, 4418707568, 12723161362, 36634883048, 105485941579, 303734663372, 874569107071
Offset: 0

Views

Author

L. Edson Jeffery, Apr 05 2011

Keywords

Comments

Let A_{9,3} = [0,0,0,1; 0,0,1,1; 0,1,1,1; 1,1,1,1], a unit-primitive matrix (see [Jeffery]). Then a(n) = Trace([A_{9,3}]^n).

Programs

  • Mathematica
    CoefficientList[Series[(4-6x-6x^2+x^3)/((1+x)(1-3x+x^3)), {x,0,30}],x] (* or *) LinearRecurrence[{2,3,-1,-1},{4,2,10,23},30] (* Harvey P. Dale, Apr 22 2011 *)

Formula

G.f.: (4-6*x-6*x^2+x^3)/((1+x)*(1-3*x+x^3)).
a(n) = 2*a(n-1)+3*a(n-2)-a(n-3)-a(n-4), {a(m)}={4,2,10,23}, m=0,1,2,3.
a(n) = Sum_{k=1..4} ((x_k)^3-2*(x_k))^n, x_k=2*(-1)^(k-1)*cos(k*Pi/9).
a(n) = (-1)^n+(1+2*cos(Pi/9))^n+(1-cos(Pi/9)+sqrt(3)*sin(Pi/9))^n + (1-cos(Pi/9)-sqrt(3)*sin(Pi/9))^n. - L. Edson Jeffery, Dec 15 2011
a(n) = (-1)^n + 3*A147704(n). - R. J. Mathar, Oct 08 2016