A188133 Primes p such that 10p+1 divides 2^p-1.
43, 487, 547, 571, 883, 1459, 1663, 1723, 2539, 3319, 3511, 4903, 5107, 5431, 6199, 6367, 8011, 8599, 9007, 9391, 9511, 10111, 11119, 11959, 12379, 12703, 13291, 13339, 13999, 14083, 14551, 14767, 15187, 15319, 15859, 15991, 16183, 16603, 16747, 17659, 18427, 19699
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range[2*10^4], PrimeQ[#] && PowerMod[2, #, 10# + 1] == 1 &] (* Amiram Eldar, Nov 13 2019 *) Select[Prime[Range[2500]],PowerMod[2,#,10#+1]==1&] (* Harvey P. Dale, Dec 08 2024 *)
-
PARI
forprime(p=1,1e5, Mod(2,p*10+1)^p-1 || print1(p", "))
-
Python
from sympy import sieve print([p for p in sieve[1:10000] if pow(2,p,10*p+1) == 1]) # Karl-Heinz Hofmann, Jan 27 2022
Comments