cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A188137 Riordan array (1, x*(1-x)/(1-3*x+x^2)).

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 13, 14, 6, 1, 34, 46, 27, 8, 1, 89, 145, 107, 44, 10, 1, 233, 444, 393, 204, 65, 12, 1, 610, 1331, 1371, 854, 345, 90, 14, 1, 1597, 3926, 4607, 3336, 1620, 538, 119, 16, 1, 4181, 11434, 15045, 12390, 6997, 2799, 791, 152, 18, 1
Offset: 1

Views

Author

Vladimir Kruchinin, Mar 21 2011

Keywords

Comments

The column of index 0 contains a 1 followed by zeros and is not reproduced in this triangle.
The second argument of the array definition is A(x) = A000045(x/(1-x)) = A001519(x)-1.
Triangle T(n,k), 1 <= k <= n, given by (0, 2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 26 2012

Examples

			Triangle begins:
   1;
   2,   1;
   5,   4,   1;
  13,  14,   6,  1;
  34,  46,  27,  8,  1;
  89, 145, 107, 44, 10, 1;
From _Philippe Deléham_, Jan 26 2012: (Start)
Triangle (0,2,1/2,1/2,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,...) begins:
  1;
  0,  1;
  0,  2,   1;
  0,  5,   4,   1;
  0, 13,  14,   6,  1;
  0, 34,  46,  27,  8,  1;
  0, 89, 145, 107, 44, 10, 1; (End)
		

Crossrefs

Cf. A001519 (column 1), A030267 (column 2).

Programs

  • Maple
    A188137 := proc(n,m) add( binomial(n-1,k-1) *add(binomial(i,k-m-i) *binomial(m+i-1,m-1),i=ceil((k-m)/2)..k-m),k=m..n) ; end proc:
    seq(seq(A188137(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Mar 30 2011
  • Mathematica
    t[n_, m_] := Sum[ Binomial[n - 1, k - 1]*Sum[ Binomial[i, k - m - i]*Binomial[m + i - 1, m - 1], {i, Ceiling[(k - m)/2], k - m}], {k, m, n}]; Table[t[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Feb 21 2013, translated from Maxima *)
  • Maxima
    T(n,m):=sum(binomial(n-1,k-1) *sum(binomial(i,k-m-i) *binomial(m+i-1,m-1), i,ceiling((k-m)/2),k-m), k,m,n);

Formula

T(n,m) = Sum_{k=m..n} binomial(n-1,k-1) * Sum_{i=ceiling((k-m)/2)..k-m} binomial(i,k-m-i)*binomial(m+i-1,m-1), 0
T(n,m) = Sum_{i=1..n-m+1} A001519(i)*T(n-i,m-1).
T(n,1) = A001519(n).
Sum_{m=1..n} T(n,m) = A007052(n-1).
G.f.: (1-3x+x^2)/(1-(3+y)*x + (1+y)*x^2). - Philippe Deléham, Jan 26 2012