A188137 Riordan array (1, x*(1-x)/(1-3*x+x^2)).
1, 2, 1, 5, 4, 1, 13, 14, 6, 1, 34, 46, 27, 8, 1, 89, 145, 107, 44, 10, 1, 233, 444, 393, 204, 65, 12, 1, 610, 1331, 1371, 854, 345, 90, 14, 1, 1597, 3926, 4607, 3336, 1620, 538, 119, 16, 1, 4181, 11434, 15045, 12390, 6997, 2799, 791, 152, 18, 1
Offset: 1
Examples
Triangle begins: 1; 2, 1; 5, 4, 1; 13, 14, 6, 1; 34, 46, 27, 8, 1; 89, 145, 107, 44, 10, 1; From _Philippe Deléham_, Jan 26 2012: (Start) Triangle (0,2,1/2,1/2,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,...) begins: 1; 0, 1; 0, 2, 1; 0, 5, 4, 1; 0, 13, 14, 6, 1; 0, 34, 46, 27, 8, 1; 0, 89, 145, 107, 44, 10, 1; (End)
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
- Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
Programs
-
Maple
A188137 := proc(n,m) add( binomial(n-1,k-1) *add(binomial(i,k-m-i) *binomial(m+i-1,m-1),i=ceil((k-m)/2)..k-m),k=m..n) ; end proc: seq(seq(A188137(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Mar 30 2011
-
Mathematica
t[n_, m_] := Sum[ Binomial[n - 1, k - 1]*Sum[ Binomial[i, k - m - i]*Binomial[m + i - 1, m - 1], {i, Ceiling[(k - m)/2], k - m}], {k, m, n}]; Table[t[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Feb 21 2013, translated from Maxima *)
-
Maxima
T(n,m):=sum(binomial(n-1,k-1) *sum(binomial(i,k-m-i) *binomial(m+i-1,m-1), i,ceiling((k-m)/2),k-m), k,m,n);
Formula
T(n,m) = Sum_{k=m..n} binomial(n-1,k-1) * Sum_{i=ceiling((k-m)/2)..k-m} binomial(i,k-m-i)*binomial(m+i-1,m-1), 0
T(n,m) = Sum_{i=1..n-m+1} A001519(i)*T(n-i,m-1).
T(n,1) = A001519(n).
Sum_{m=1..n} T(n,m) = A007052(n-1).
G.f.: (1-3x+x^2)/(1-(3+y)*x + (1+y)*x^2). - Philippe Deléham, Jan 26 2012
Comments